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Abstract

Derived de Rhamcohomology turns out to be important in p-adic geometry, followingBhatt's
discovery [Bha12] of conjugate filtration in char p, de-Hodge-completing results in [Bei12].
In [Kal18], Kaledin introduced an analogous de-completion of the periodic cyclic homology,
called the polynomial periodic cyclic homology, equipped with a conjugate filtration in char
p, and expected to be related to derived de Rham cohomology.

In this article, using genuine equivariant homotopy structure on Hochschild homology as
in [ABG+18, BHM22], we give an equivariant description of Kaledin's polynomial periodic
cyclic homology. This leads to Morita invariance without any Noetherianness assumption
as in [Kal18], and the comparison to derived de Rham cohomology becomes transparent.
Moreover, this description adapts directly to �topological� analogues, which gives rise to a de-
Nygaard-completion of the topological periodic cyclic homology, which admits an extension
to linear categories over truncated Brown�Peterson spectra.

As an application, we establish a noncommutative crystalline�deRhamcomparison, which
decompletes the result in [PV19], and extends it to prime p= 2. We also compare poly-
nomial periodic cyclic homology to topological Hochschild homology over Fp, and produce
a conjugate filtration in char p from our description.

1 Introduction

Grothendieck's algebraic de Rham cohomology, introduced in [Gro66], turns out to be an important
tool to study the cohomology of smooth schemes. However, it does not behave well beyond the
smooth case. Illusie, following ideas of Quillen, introduced derived de Rham cohomology , along
with its Hodge-completion, in [Ill72, Ch. VIII].

Hodge-completion makes derived de Rham cohomology easier to control, since the associated
graded pieces are given by shifts of (derived) exterior powers of the cotangent complex. In partic-
ular, it coincides with algebraic de Rham cohomology for smooth schemes.

On the other hand, (non-Hodge-completed) derived de Rham cohomology was intractable until
Bhatt's discovery in [Bha12] of conjugate filtration on it in char p, whose associated graded pieces
are equivalent to shifts of Frobenius twists of algebraic differential forms. He also observed the trivi-
ality of derived de Rham cohomology after rationalization. Using this new tool, he identified derived
de Rham cohomology with crystalline cohomology for lci maps between Z/ pr-schemes. Later
on, this non-Hodge-complete version becomes useful in p-adic geometry. For example, Fontaine's
period rings Acris and Cst are equipped with non-complete Hodge-filtration, and Bhatt applied this
non-Hodge-complete version to prove some Beilinson's conjectures in [Bei12].

Periodic cyclic homology is a noncommutative counterpart of Hodge-completed derived de
Rham cohomology, defined for general DG-categories. For morphisms of Q-schemes, the relation is
particularly simple: periodic cyclic homology is a product of shifts of derived de Rham cohomology,
as recently shown by Konrad Bals in full generality in [Bal24]. This relation was firstly discovered
by Loday�Quillen for smooth morphisms of Q-schemes, cf. [Lod98, §5.1.12], and studied in [TV11].
For schemes beyond char 0, it was studied in [Maj96]. Breakthroughs were made in [BMS19, Ant19],
which proved that, there is a complete filtration on periodic cyclic homology, whose associated
graded pieces are shifts of Hodge-completed derived de Rham cohomology.

�. This article has been written using GNU TEXMACS [Hoe20].
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In view of usefulness of non-Hodge-completed derived de Rham cohomology in p-adic geometry,
it is natural to ask whether there is a �non-Hodge-completion� of periodic cyclic homology for
DG-categories, which carries a filtration with associated graded pieces being shifts of non-Hodge-
completed derived de Rham cohomology? In [Kal18], following Kontsevich's suggestion [Kon08,
2.32], Kaledin defined polynomial periodic cyclic homology , equipped with a conjugate filtration in
char p (when p=2, it is later constructed in [Kal17]), whose associated graded pieces are equivalent
to shifts of Frobenius twisted Hochschild homology. Using this, he showed that a certain completion
of polynomial periodic cyclic homology, called co-periodic cyclic homology , is a derived Morita
invariant when the base is Noetherian. Moreover, he expected that polynomial periodic cyclic
homology is closely related to derived de Rham cohomology.

As explained in [Kal18], Kaledin's defines polynomial periodic cyclic homology and deals with
it by explicit manipulations of chain complexes, which makes the arguments technical and difficult,
and the homotopy-theoretic functoriality of this construction becomes opaque. The main goal of
this article is to give a �more invariant treatment� as he wished in the introduction, which overcomes
these difficulties.

The key to our description is the genuine equivariant homotopy structure on the usual Z-linear
Hochschild homology. More precisely, let C be a DG-category. Then the Hochschild homology of
C, being a Borel T-equivariant Z-module spectrum, has the formula

HH(C/Z)=THH(C)
THH(Z)
L Z:

This admits an obvious cyclonic (à la [BG16]) structure: the T-equivariant ring Z is the underlying
object of the constant Tambara functor Z, and the universal property of THH in [ABG+18] gives
rise to a map THH(Z)!Z of T-E1-rings. This gives rise to an enhancement

HH(C/Z)=THH(C)
THH(Z)
L Z

as a Z-module in cyclonic spectra. This was generalized to a genuine version of factorization
homology in [BHM22]. However, up to our knowledge, such a genuine equivariant homotopy struc-
ture on Z-linear Hochschild homology does not seem to be studied in the literature. By definition,
such an enhancement is a derived Morita invariant.

Remark 1.1. This genuine equivariant homotopy structure has other applications. In a companion
paper [Mao24b], we use a �thickening� of it to define prismatic Hochschild homology. In our paper
[Mao24a], we use a similar genuine equivariant structure to streamline Kaledin's Hochschild�Witt
homology, a noncommutative counterpart of de Rham�Witt complex.

It turns out that such a structure contains enough information to recover polynomial periodic
cyclic homology. Recall that, in terms of explicit chain complexes, the usual Tate construction
involves a product totalization in one direction, and Kaledin's polynomial periodic cyclic homology
is taking the direct sum totalization instead, so that it has good colimit-preserving properties.
Inspired by this, we introduce the following definitions:

Definition 1.2. (Definitions 2.1 and 3.3) The (Z-)de-completed T-Tate construction (¡)�ZT

is the filtered-colimit-preserving approximation of the composite functor

ModZ(Spg
<T)¡! SpBT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)tT

Sp:

The polynomial periodic cyclic homology HPpoly(C/Z) of a DG-category C is defined to be HH(C/
Z)�ZT, applying the de-completed T-Tate construction to Hochschild homology HH(C/Z).

The same construction works for any t-bounded (i.e. bounded with respect to the t-structure)
animated ring as base in place of Z, as done in the main text.

Remark 1.3. The de-completed Tate construction depends on the choice of base. However, in
some cases, it does not quite depend on that. We will prove relevant results in Section 4.
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From this description, it is immediate that polynomial periodic cyclic homology is rationally
zero (Remark 2.9), since the functor ModZ(Spg

<T)!SpBT becomes an equivalence after rational-
ization. With slightly more efforts, we show that

Proposition 1.4. (Proposition 4.4) Let C be a smooth and bounded DG-category1.1. Then the
assembly map HPpoly(C/Z)!HP(C/Z) is an equivalence after profinite completion.

Note that, for every quasicompact quasiseparated scheme X, its derived category D(X) is
bounded, by [BvdB03, Cor 3.1.8]. When X is in addition smooth, then its derived category D(X)
is also smooth. We refer to [Orl16] for general discussions. This proposition, along with colimit-
preservation of de-completed Tate construction, implies that, on animated rings, the polynomial
periodic cyclic homology is left Kan extended from polynomial rings, and thus it coincides with
various adhoc constructions in the literature1.2, such as in [BMS19, AMMN22]. Consequently, we
address Kaledin's expectation in the following.

Proposition 1.5. (Construction 4.8) Let R be a commutative ring. Then there exists a func-
torial filtration FilHKR

� on the profinite completion HPpoly(R/Z)^ of polynomial periodic cyclic
homology with associated graded pieces equivalent to shifts of derived de Rham cohomology dRR/Z
after profinite completion.

Our description also suggests a �topological� analogue.

Definition 1.6. (Definition 4.9) Let S be a perfectoid ring, and C a DG-category over S. Then
topological polynomial periodic cyclic homology TPpoly/S(C) is defined to be THH(C)�THH(S)T,
defined by applying THH(S)-de-completed T-Tate construction to topological Hochschild homology
THH(C).

Note that this is an arena where explicit chain complex manipulations cannot arrive. Previous
results for polynomial periodic cyclic homology adapts to its topological analogue as well:

Proposition 1.7. (Corollary 4.12) Let S be a perfectoid ring, and R a p-completely smooth
and bounded DG-category over S. Then the assembly map TPpoly/S(R)!TP(R) is an equivalence
after (p; ker(�))-completion, where � :Ainf(S)�S is Fontaine's map.

Proposition 1.8. (Construction 4.13) Let S be a perfectoid ring, and R a commutative S-
algebra. Then there exists a functorial filtration FilM� on the (p;ker(�))-completed topological poly-
nomial periodic cyclic homology TPpoly/S(R)(p;ker(�))

^ with associated graded pieces equivalent to
shifts of Frobenius twisted prismatic cohomology 'A� �R/A after (p;ker(�))-completion, where A :=
Ainf(S).

In a forthcoming work of Devalapurkar�Hahn�Raksit�Yuan, they produce de-completions of
TC¡ and TP which carry filtrations with associated graded pieces given by absolute prismatic
cohomology and its Nygaard filtered pieces. Our techniques adapt to this situation as well, giving
rise to de-completed Borel completion (¡)�THH(Z) :ModTHH(Z)(Spg

<T)!ModTHH(Z)h(Spg
<T).

Theorem 1.9. (Corollary 5.10) The functor

THH� :CAlgZ
an!RModTHH(Z)h(Spg

<T)p^

in Devalapurkar�Hahn�Raksit�Yuan extends to a localizing invariant over Z, which is equivalent
to (THH(¡)�THH(Z))p^. We can replace Z by truncated Brown�Peterson spectra BPhni for n 2N
as well (Remark 5.32).

1.1. Smooth DG-categories are necessarily modules categories over smooth E1-rings, by [Lur18, Prop 11.3.2.4].
A DG-category is bounded if, for every pair (x; y) of compact objects, the mapping Z-module spectrum Hom(x;
y)2D(Z) has bounded Tor-amplitude (or equivalently, t-bounded, since Z is of finite flat dimension).

1.2. Also compare with [Man24, §1].
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Thus this extended THH� is indeed a noncommutative counterpart of (Nygaard-filtered)
absolute prismatic cohomology. Actually, we can recover TPpoly/S from this new construction:

Theorem 1.10. (Example 5.29 and Corollary 5.31) Let S be a perfectoid ring, and C a DG-
category over S. Then we have equivalences

((THH(C)�THH(Z))Cp1)(p;v1)
^ ' TC¡;poly/S(C)(p;�)^ ;

(((THH(C)�THH(Z))�Cp)Cp1/Cp)(p;v1)
^ ' TPpoly/S(C)(p;�)^ :

It seems slightly surprising that cyclotomic THH (with THH(Z)-module structure) is already
enough to de-Nygaard-complete topological periodic cyclic homology, but this phenomenon is
demystified by Efimov's rigidity of localizing motives (Remark 4.17).

As for noncommutative geometry on its own, we first give a noncommutative crystalline�de
Rham comparison. Let R be an animated ring. Then the crystalline�de Rham comparison theorem
tells us that the crystalline cohomology of R
Z

LFp over Zp is equivalent to the p-completion of
the (non-Hodge-completed) derive de Rham of R over Z. In [PV19], when p is an odd prime, for
DG-categories C, they give a comparison between TP(C 
Z

LFp) with HP(C/Z), which corresponds
to such a comparison under certain completions. This result is improved by [DR25, Thm 0.5.1] as
well for odd primes p. Equipped with previous constructions, adapting main ideas in [PV19] along
with an observation by A. Raksit, we prove a comparison of de-completed constructions which
corresponds to the crystalline�de Rham comparison for all primes:

Theorem 1.11. (Corollary 6.28) Let C be a DG-category. Then there exists a lax symmetric
monoidal (in C) equivalence

TPpoly/Fp(C 
Z
LFp)p^'HPpoly(C/Z)p^:

We then give two proofs for the following comparison, due to Kaledin in [Kal20, Cor 11.15],
but our proof is much simpler.

Proposition 1.12. (Corollary 7.10) Let C be a DG-category over Fp. Then the polynomial
periodic cyclic homology HPpoly(C/Fp) is equivalent to THH(C)[�¡1] as ZtT-module spectra.

We also produce a conjugate filtration on polynomial periodic cyclic homology in char p in
Section 8, and prove that

Proposition 1.13. (Corollary 8.21) Let k be a commutative Fp-algebra, and C a DG-category
over k. Then the conjugate filtration on HPpoly(C/k) is complete in the following two cases:

1. C=D(R) for some (¡1)-connective E1-k-algebra R (which includes all associative k-alge-
bras R);

2. C=D(X) for a quasicompact quasiseparated k-scheme X.

Remark 1.14. In comparison Efimov's refined negative cyclic homology and its continuation in
Scholze's ongoing work1.3 on refined TC¡, as mentioned above, in Remark 4.17, we explain that
topological Hochschild homology as a cyclotomic spectrum already sees �all� p-adic formal infor-
mation. However, their versions capture rigid analytic information. For example, for smooth Fp-
schemes, their versions see rigid cohomology. It might be worth understanding whether equivariant
homotopy theory could say something for their versions as well.

Notation 1.15. Let G be a finite group. We denote by SpgG the symmetric monoidal 1-category of
genuine G-spectra, by MackGcoh(k) the abelian category of k-linear cohomological G-Mackey functors
(we omit k when k = Z), and by Spg

<T (resp. SpgpT) the symmetric monoidal 1-category of
cyclonic (resp. p-cyclonic) spectra as in [ BG16].

1.3. An abstract, alongwith recordings, of the talk can be found at https://www.mpim-bonn.mpg.de/node/13359.
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2 A de-completion of Tate construction

Let k be a commutative ring, and G a finite group or T. Recall that the G-Tate construction
(¡)tG :D(k)BG!D(k) does not preserve filtered colimits. In this section, we try to �de-complete�
it when the input is further equipped with a genuine equivariant structure. When G=Cp, we will
show that it can be expressed in terms of the geometric fixed points. We will also establish a de-
completed version of the Tate orbit lemma.

Definition 2.1. Let G be a finite group (resp. T), and A an E1-algebra in the symmetric monoidal
1-category SpgG (resp. Spg

<T) of G-spectra (resp. cyclonic spectra). Then

� The (A-)de-completed homotopy G-fixed points (¡)�AG : RModA(SpgG)! Sp (resp.
RModA(Spg

<T)! Sp) is the filtered-colimit-preserving approximation of the homotopy G-
fixed points (¡)hG : RModA(SpgG)! Sp (resp. RModA(Spg

<T)! Sp), equipped with an
assembly map (¡)�AG! (¡)hG. We omit �A-� when the context is clear.

� The (A-)de-completed G-Tate construction (¡)�AG : RModA(SpgG) ! Sp (resp.
RModA(Spg

<T)!Sp) is the filtered-colimit-preserving approximation of the G-Tate construc-
tion (¡)tG :RModA(SpgG)! Sp (resp. RModA(Spg

<T)! Sp), equipped with an assembly
map (¡)�AG! (¡)tG which canonically fits into a commutative diagram

(¡)�AG ¡! (¡)hG

 
¡

 
¡

(¡)�AG ¡! (¡)tG
: (2.1)

Remark 2.2. Let G be a finite cyclic group (resp. T), and A a commutative algebra in E :=SpgG

(resp. E :=Spg
<T). Then the diagram (2.1) is Cartesian in the1-category FunEx(E ;Sp): the fiber

of the canonical natural transformation (¡)hG! (¡)tG is (¡)hG2FunEx(E ; Sp), which preserves
filtered colimits as well, and consequently, the diagram (2.1) induces an equivalence on fibers of
vertical arrows.

Remark 2.3. Let G be a finite group (resp. T), and A!B a map of E1-algebras in the symmetric
monoidal 1-category E := SpgG (resp. E := Spg

<T) of G-spectra (resp. cyclonic spectra). Then
the assembly maps on compact objects of RModB(E) induces �relative� assembly maps (¡)�AG!
(¡)�BG and (¡)�AG! (¡)�BG, which fits into a commutative diagram

(¡)�AG ¡! (¡)�BG

 
¡

 
¡

(¡)�AG ¡! (¡)�BG
which is Cartesian by Remark 2.2.

Remark 2.4. Let G be a finite group (resp. T), and A an E1-algebra in the symmetric monoidal
1-category E :=SpgG (resp. E :=Spg

<T) of G-spectra (resp. cyclonic spectra). Let A!Ah denote
the Borel completion of A. Then it follows immediately from the definitions that the de-completed
homotopy G-fixed points (¡)�AG factors as

RModA(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
ALAh RModAh(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
�AhG Sp
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and similarly for the de-completed G-Tate construction. Roughly speaking, it does not hurt to
replace all genuine equivariant bases by their Borel completions. However, sometimes it seems to
be convenient to consider genuine equivariant bases.

Remark 2.5. Let G be a finite group, and A an E1-algebra in SpgG. Then the lax symmetric
monoidal structure on the homotopy fixed points (¡)hG (resp. the Tate construction (¡)tG) gives
rise2.1 to a lax symmetric monoidal structure on the de-completed homotopy fixed points (¡)�AG
(resp. the de-completed Tate construction (¡)�AG). The assembly maps are equipped with a lax
symmetric monoidal structure as well. In particular, the objects M �AG (resp. M�AG) carries a
canonical AhG-(resp. AtG-)module structure, which is functorial in M 2ModA(SpgG).

Remark 2.6. In desirable situations, the A-de-completed homotopy G-fixed points (resp. G-Tate
construction) does not quite depend on A. We discuss some independences of this form in Section 4.

Remark 2.7. Let G be a finite group, and A an E1-algebra in SpgG. Recall that the symmetric
monoidal1-category SpgG is rigid, thus the forgetful functor ModA(SpgG)!ModA(SpBG) factors
through the rigidification (ModA(SpBG))rig of the target, and the A-de-completed G-Tate construc-
tion (¡)�AG coincides with the composite

ModA(SpgG)¡! (ModA(SpBG))rig!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)tG;rig
Sp;

which can be checked by restricting to compact objects of ModA(SpgG). The same holds for de-
completed homotopy G-fixed points.

Remark 2.8. Let A be an E1-algebra in D(Z)
 Spg
<T. Recall that, for every A-module M in

Spg
<T and every positive integer n2N>0, the canonical maps

M tT/n ¡M tT
AtT AtCn¡!M tCn

are equivalences, [NS18, Lem IV.4.12]. It follows that, the canonical maps

M�AT/n ¡M�AT
AtT AtCn¡!M�ACn

are equivalences as well. Consequently, up to profinite completion, the A-de-completedT-Tate con-
struction M�AT can be recovered from de-completed Cn-Tate constructions, where n runs through
all positive integers. This gives rise to a lax symmetric monoidal structure on the profinitely
completed de-completed T-Tate constructure (M�AT)^.

Remark 2.9. Let k be a commutative ring. Then the constant Green functor k can be viewed as
an object of D(Z)
 Spg

<T. Then for every n2N>0, we have

(k
�T
1 [T/Cn]+)hT
Z

LQ' 0' (k
�T
1 [T/Cn]+)tT
Z

LQ:

Consequently, the rationalized de-completed T-Tate construction (¡)�kT vanishes. Combining
with Remark 2.8, we see that the de-completed T-Tate construction (¡)�kT can be completely
recovered from de-completed Cn-Tate constructions, where n runs through all positive integers.

The Tate orbit lemma admits a de-completion. We first observe that, since Cp is a simple
group2.2, the de-complete Cp-Tate construction has a fairly simple formula:

Lemma 2.10. Let A be an E1-algebra in the symmetric monoidal category SpgCp of Cp-spectra.
Then the A-de-completed Cp-Tate construction (¡)�ACp coincides with the composite functor

RModA(SpgCp)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp
D(A�Cp)¡!D(AtCp)

2.1. Here the same argument does not work for G=T.
2.2. In this article, we only consider cyclic group actions, but the argument works for any simple group.

6 Section 2



where the second functor is the base change along the map A�Cp!AtCp of E1-rings. Moreover,
when A is an E1-algebra in SpgCp, this identification is (lax) symmetric monoidal.

Proof. It suffices to restrict to compact objects of RModA(SpgCp). For compact objects, there
are many ways to see this. For example, the functor (¡)tCp vanishes on induced Cp-spectra, thus
it canonically factors through D(A�Cp) in PrL (here we use the fact that Cp is a simple group),
cf. [AMR21, §5], and then to see that the result functor D(A�Cp)!D(AtCp) in PrL coincides with
the base change, it suffices to check on the generator, which is straightforward. The symmetric
monoidal structure follows from a similar argument. �

Corollary 2.11. Let A be an E1-algebra in the symmetric monoidal category SpgCp of Cp-spectra.
Then the A-de-completed Cp-Tate construction (¡)�ACp : RModA(SpgCp)!D(AtCp) is strongly
continuous2.3.

Corollary 2.12. Let A be an E1-algebra in the symmetric monoidal category SpgCp of Cp-spectra.
Then the A-de-completed Cp-Tate construction (¡)�ACp is symmetric monoidal.

Lemma 2.13. Let A be a bounded below E1-algebra in cyclonic spectra. Then the p-completed A-
de-completed T-Tate construction2.4

((¡)�AT)p^ :RModA(Spg
<T)¡!D(AtT)p^;

factors as2.5

RModA(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ACp

RModAtCp(Sp
gp(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
A
tCp

(T/Cp)

D(AtT)p^

in PrStL .

Proof. Since every functor preserves filtered colimits, it suffices to check on compact objects in
RModA(Spg

<T), and this follows from Corollary 2.11 and the Tate orbit lemma (since A is bounded
below, so is A
�T

1 [T/Cm]+ for every m2N>0). �

The same argument works for finite cyclic groups (for which we can further keep track of the
lax symmetric monoidal structure on the de-completed Tate construction).

Lemma 2.14. Let r 2N>0, and A a bounded below E1-(resp. E1-)algebra in Cpr-spectra. Then
the A-de-completed Cpr-Tate construction

(¡)�AT :ModA(SpCpr)¡!D(AtCpr);

as a presentable (resp. lax symmetric monoidal) functor, factors as

ModA(SpgCpr)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ACp
ModAtCp(Sp

gp(Cpr/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
�
A
tCp

¡
Cpr/Cp

�
D(AtCpr):

Remark 2.15. Let k be a commutative ring. By Remarks 2.8 and 2.9 and Lemma 2.14, we can
also keep track of the lax symmetric monoidal structure on the p-completed de-completed T-
Tate construction ((¡)�kT)p^, showing that, as an exact lax symmetric monoidal functor, it factors
through the composite exact symmetric monoidal functor

Modk(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

Modk�Cp(Sp
g<(T/Cp))¡!ModktCp(Sp

g<(T/Cp));

where the remaining functor ModktCp(Sp
g<(T/Cp))!D(A) is the limit of de-completed homotopy

Cpr-fixed points along r2N (which at least a priori does not necessarily preserve filtered colimits).

2.3. A functor F :C!D in PrStL is strongly continuous if its right adjoint FR :D!C preserves filtered colimits.
When C is compactly generated, it is equivalent to F preserving compact objects.

2.4. Note that the forgetful functor Spg
<T!SpgpT induces an equivalence on p-complete objects, thus we could

work p-typically throughout.
2.5. Thanks to Remark 2.4, it does not matter what cyclonic structure on AtCp that we put.
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3 Polynomial periodic and negative cyclic homology

We briefly review Kaledin's polynomial periodic cyclic homology of cyclic objects, and then describe
it in terms of the de-completed T-Tate construction (Definition 3.3), informally explaining why it
coincides with Kaledin's original construction.

Let k be a commutative ring, and X� : �op!Modk a cyclic objects in k-modules. Recall that,
for every [n]�2�op, the k-module Xn :=X�([n]�) carries an k-linear Cn action, which gives rise to
a 2-periodic complex

� � �                                           1¡�n Xn                       Nn Xn                                           1¡�n Xn                       Nn � � �
weight ¡1 0 1

of k-modules, where �n :Xn!Xn is the generator of Cn, and Nn := 1+�n+ � � �+�n
n¡1 is the Cn-

norm. This complex represents the shifted Tate construction Xn
tCn[¡1]. These complexes compile

into a double complex
��� ��� ���

 
¡

 
¡

 
¡

� � �                                 1¡�
X1               

N
X1                                 

1¡�
X1               

N � � �

 
¡

 
¡

 
¡

� � �                                 1¡�
X0               

N
X0                                 

1¡�
X0               

N � � �

where we surpress the subscripts of N and �, and vertical differentials are appropriately 2-period-
ically given. Then

� The periodic cyclic homology HP(X�/k) of the cyclic object X�, is the object in the derived
category D(k) of k-modules represented by the product totalization of this double complex.

� The polynomial periodic cyclic homology HPpoly(X�/k) of the cyclic object X� is the object
in the derived category D(k) of k-modules represented by the direct sum totalization of this
double complex.

We now give an alternative, more conceptual description of this double complex and the polynomial
periodic cyclic homology. Recall that, the geometric realization jX�j�2D(k)BT can be rewritten
as a geometric realization

colim
[n]2�op

IndCn
T (Xn)2D(k)BT:

If we apply the T-Tate construction to it, and incorrectly interchange (¡)tT with colim[n], we get

colim
[n]2�op

(IndCn
T (Xn))tT2D(k)

where (IndCn
T (Xn))tT'Xn

tCn[¡1] [HN20, Prop 3], thus we see that this computes the polynomial
periodic cyclic homology. Note that every G-module M gives rise to a cohomological G-Mackey
functor M : [G/H] 7!MH, we can endow Cn-module Xn a cohomological Cn-Mackey functor
structure, and thus realize the geometric realization jX�j� as an object of Modk(SpT), and apply
the de-completedT-Tate construction (¡)�kT to it, obtaining polynomial periodic cyclic homology.

Remark 3.1. This procedure can be made more rigorous by considering cohomological Mackey
functors over Connes' cyclic category �op. Since we do not depend on Kaledin's original construc-
tion, we skip such a development. However, a toy version of this is explained in Appendix A.

Question 1. This comparison does not compare the lax symmetric monoidal structure of Kaledin's
polynomial periodic cyclic homology and ours. How do we compare the ring structure on the two?

Now we give our formal definitions, and explain why it corresponds to the construction above
for associative flat k-algebras.
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Construction 3.2. Let k be a t-bounded3.1 animated ring. The universal property of THH as in
[ABG+18] gives rise to a map THH(k)! k of T-E1-rings. Thus for every THH(k)-module M in
cyclonic spectra, we get an objectM 
THH(k)

L k2Modk(Spg
<T). In particular, let C be a dualizable

presentable stable k-linear 1-category, we have a canonical genuine equivariant enhancement of
the k-linear Hochschild homology of C, denoted by HH(C/k)2Modk(Spg

<T).

Definition 3.3. Let k be a t-bounded animated ring, and C a dualizable presentable stable k-linear
1-category. Then the polynomial periodic cyclic homology HPpoly(C /k) (resp. the polynomial
negative cyclic homology HC¡;poly(C/k)) is defined to be the k-de-completed T-Tate construction
HH(C/k)�kT (resp. the k-de-completed homotopy T-fixed points HH(C/k)�kT).

Let k be a commutative ring, and R an associative flat k-algebra. Recall that, as in [ABG+18,
§6], the Hochschild homology HH(R/k) relative to the constant Tambara functor k is informally
given by the geometric realization of relative norms [n] 7!R
k

LCn. In [Mao24a], we formally identify
these norms with the naive tensor powers equipped with the obvious cyclic action. Thus the
previous discussion basically identifies the polynomial periodic cyclic homology HPpoly(R/k) with
Kaledin's original one.

4 de Rham and prismatic comparison

In this section, we will first establish a comparison result (Proposition 4.4), which says that,
for smooth commutative algebras, polynomial periodic cyclic homology is the same as periodic
cyclic homology. As a consequence, polynomial periodic cyclic homology of commutative algebras
acquires a filtration whose associated graded pieces are equivalent to shifts of (non-Hodge-com-
pleted) derived de Rham cohomology. We then define a �topological� analogue (Definition 4.9),
and for smooth algebras over perfectoid rings, it acquires a motivic filtration (Construction 4.13)
whose associated graded pieces are equivalent to shifts of (non-Nygaard-completed) prismatic
cohomology.

We first give some sufficient conditions for assembly maps being equivalences.

Lemma 4.1. Let A is a commutative algebra in cyclonic spectra (resp. G-spectra for a finite group
G) whose underlying Borel equivariant spectrum, denoted by Ah, is t-bounded. Then the assembly
map (¡)�AG! (¡)tG (resp. (¡)�AG! (¡)hG) is an equivalence on the idempotent-complete stable
subcategory of ModA(Spg

<T) (resp. ModA(SpgG)) generated by A-modules of the form
L

i2IA

[T/Hi] (resp.

L
i2IA
 [G/Hi]) for an indexed family (Hi)i2I of finite cyclic groups Hi (resp.

finite groups Hi�G).

Proof. We write the argument for the finite group case. The cyclonic case is similar.

� By construction, the assembly map is an equivalence on A
 [G/H] for finite groups H �G.

� The family fAh
 [G/H]2SpBG j (H �G is a finite subgroup)g is uniformly t-bounded, thus
the canonical map M

i

(A
 [G/Hi])hG¡!
�M

i

A
 [G/Hi]
�
hG

is an equivalence for an indexed family (Hi�G)i of finite subgroups of G. It follows that
the assembly map is an equivalence on

L
iA
 [G/Hi].

� The result follows from the fact that the functors (¡)�AG, (¡)�G, (¡)tG and (¡)hG are
exact. �

When G is a finite cyclic group, the situation is particularly simple.

3.1. This means that it is bounded with respect to the canonical t-structure. We add the prefix �t-� to avoid
confusion with boundedness of p-power torsion (which we do not use in this article anyways).
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Corollary 4.2. Let G be a finite cyclic group. Then the assembly map (¡)�ZG! (¡)�ZG (resp.
(¡)�ZG! (¡)�ZG) is an equivalence on t-bounded objects in ModZ(SpgG).

Proof. Since the abelian category MackGcoh has finite projective dimension when G is finite cyclic
[BSW17, Cor 7.2], every t-bounded object is represented by a finite complex of projective objects.
Thus the assembly map (¡)�G! (¡)tG is an equivalence on these objects by Lemma 4.1. �

Corollary 4.3. Let G be a finite cyclic group, and A a commutative algebra in DbMackGcoh�
ModZ(SpgG). Then the assembly map (¡)�ZG!(¡)�AG (resp. (¡)�ZG!(¡)�AG) is an equivalence.
Consequently, the A-de-completed G-Tate construction (¡)�AG (resp. the A-de-completed homotopy
G-fixed points (¡)�AG) coincides with the composite functor

ModA(SpgG)¡!ModZ(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ZG or (¡)�ZG
D(Z):

Proof. Note that the 1-category ModA(SpgG) is generated by objects of the form M 
Z
LA for

finite permutation G-modulesM , which is t-bounded sinceM is Z-flat, and the result follows from
Corollary 4.2. �

We are ready to establish the comparison between the polynomial periodic (resp. negative)
cyclic homology and the periodic (resp. negative) cyclic homology on smooth algebras:

Proposition 4.4. Let k be a t-bounded animated ring, and R an E1-k-algebra. Then the commu-
tative diagram

HC¡;poly(R/k) ¡! HC¡(R/k)

 
¡

 
¡

HPpoly(R/k) ¡! HP(R/k)

as an instance of (2.1) is Cartesian. If R is p-completely smooth as an E1-k-algebra, and have
bounded Tor-amplitude in D(k)p^, then the horizontal assembly maps are equivalences after p-
completion.

We first give a proof in the special case of R being a p-completely smooth animated k-algebra
(i.e. with commutativity), since the general case needs knowledge on polygonic spectra in [KMN23],
and the commutative case is sufficient for this section.

Proof of Proposition 4.4 with commutativity. By Remark 2.2, this commutative diagram is
Cartesian, thus for p-completely smooth animated k-algebras R, it suffices to check that the map
HPpoly(R/k)!HP(R/k) is an equivalence after modulo p, which is equivalent to base change
along k!k
Z

LFp, thus we may assume that k is a t-bounded animated Fp-algebra. We can further
check it after modulo p again. By Remark 2.8, it reduces to check that the assembly map

HH(R/k)�kCp¡!HH(R/k)tCp

is an equivalence. By Corollaries 4.2 and 4.3, it suffices to check that the cyclonic spectrum
HH(R/k)2Modk(Spg

<T) is t-bounded (thus so after forgetting to SpgCp). We check in two steps.

Polynomial case. When R=P 
Fp
L k where P is a (finite) polynomial Fp-algebra. Then we

have HH(R/k) =HH(P /Fp)
Fp
L k, and by t-boundedness of k, it suffices to show that

HH(P /Fp) is t-bounded. This follows from [Hes96, 2.2.4 & 2.2.5].

General case. By passing to a Zariski cover, we may assume that there exists an étale map
S!R where S is a (finite) polynomial k-algebra. Then by [HLL20, Add 3.2] (along with
[Bor11, Thm B], which is used in their proof), the map THH(S)!THH(R) is flat (even
étale) in CAlg(Spg

<T), thus so is the map HH(S/k)!HH(R/k), and the result follows. �

Now we give the proof for Proposition 4.4 in full generality. As in the the first proof of Propo-
sition 4.4, it reduces to check that the assembly map

HH(R/k)�kCp¡!HH(R/k)tCp
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is an equivalence when k is a t-bounded animated Fp-algebra, and R is p-completely smooth
as an E1-k-algebra with bounded Tor-amplitude in D(k). We prove a generalized version with
coefficients.

Let R be an E1-ring spectrum, and M an R-R-bimodule in Sp. Then by [KMN23, §6], the
topological Hochschild homology THH(R;M) carries a canonical p-polygonic structure, given by
the sequence (THH(R;M
RLpr)2 SpBCpr)r2N, along with polygonic Frobenius maps

THH(R;M
RLpr)¡!THH(R;M
RLpr+1)tCp

in SpBCpr. Moreover, when all THH(R;M
RLpr) in question are bounded below (this is the case
when M is a perfect R-R-bimodule in Sp), we get a sequence (THH(R;M
RLpr)2SpgCpr)r2N with
equivalences

THH(R;M
RLpr+1)�Cp!!!!!!!!!!!!!!' THH(R;M
RLpr)

of genuine Cpr-spectra. This construction extends to the case without bounded-below-ness, by a
forthcoming work by Harpaz�Nikolaus�Saunier. All of these constructions are functorial in (R;M).

There is also a forgetful functor from cyclotomic spectra to polygonic spectra, and THH(R;R)
as a polygonic spectrum is the same as the underlying polygonic spectrum of the cyclotomic
spectrum THH(R).

Construction 4.5. Let k be an animated ring, R an E1-k-algebra, and M an R-R-bimodule
in D(k). Then for every r 2N, we get a genuine equivariant enhancement HH((R;M)/k) of
Hochschild homology HH((R;M
RLpr)/k) with coefficients given by

HH((R;M
RLpr)/k) :=THH(R;M
RLpr)
THH(k)
L k:

Lemma 4.6. Let k be a t-bounded animated ring, R an E1-k-algebra with bounded Tor-amplitude
in D(k), and M a perfect R-R-bimodule in D(k). Then the assembly map

HH((R;M
RLp)/k)�kCp¡!HH((R;M
RLp)/k)tCp

is an equivalence.

Proof. The proof of [NS18, Prop III.1.1] (or [Lur11, Prop 2.2.3]) implies that the functor HH((R;
(¡)
RLp)/k)tCp is exact. By Lemma 2.10, the symmetric monoidal structure on (¡)�Cp, and the
equivalence THH(R;M
RLp)�Cp!!!!!!!!!!!!!!' M , we see that the functor HH((R; (¡)
RLp)/k)�Cp is exact as
well. Thus, to see that the assembly map in question is an equivalence, it suffices to show that it
is an equivalence when M =R
kLR, the free R-R-bimodule in D(k) of rank 1. In this case, for
every r 2N, we have an equivalence

THH(R; (R
kLR)
R
Lpr)'THH(k;R
k

Lpr)

in ModTHH(k)(SpgCp
r), and after base change along THH(k)!k, it becomes the relative Cpr-norm

R
kCpr. Under this identification, the assembly map in question becomes the assembly map¡
R
k

LCp
�
�kCp¡! (R
k

LCp)tCp;

which is an equivalence by Lemma 4.7. �

Lemma 4.7. Let k be a t-bounded animated ring, and M a k-module spectrum of bounded Tor-
amplitude in D(k). Then the assembly map¡

M
kLCp
�
�kCp¡! (M
kLCp)tCp

is an equivalence.

Proof. Since both sides are exact in M , we may assume that M is a flat k-module spectrum,
which is a filtered colimit colimiMi of finite free k-module spectra by Lazard's theorem [Lur17,
Thm 7.2.2.15]. In this case, each derived cohomological Cpr-Mackey functor Mi


kLCp is t-bounded

by the t-boundedness of k, thus so is their filtered colimit M
kLCp. The result follows from Corol-
laries 4.2 and 4.3. �
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Proof of Proposition 4.4 in general. It follows from Lemma 4.6 by setting M =R. �

Question 2. Is there any categorical generalization of Lemma 4.6, namely, replacing R by dual-
izable presentable stable k-linear 1-category C which is smooth with bounded Tor-amplitude4.1,
and replacing M by an colimit-preserving k-linear endofunctor C!C?

Now we construct an HKR filtration on the polynomial periodic (resp. negative) cyclic homology
whose associated graded pieces are shifts of (non-Hodge-completed) derived de Rham cohomology
(resp. its Hodge-filtered pieces), Hodge-de-completing [BMS19, Thm 1.17] and [Ant19].

Construction 4.8. (HKR filtration) Let k be a t-bounded animated ring. Then by [Rak20]
(which generalizes [Ant19]), for every smooth k-algebra R, there is an exhaustive filtration FilHKR

� ,
functorial in R, on the canonical p-completed map

HC¡(R/k)p^¡!HP(R/k)p^

whose i-th associated graded piece grHKR
i is given by the canonical map

FilHi dRR/k[2 i]p^!dRR/k[2 i]p^:

By Proposition 4.4 and sifted-colimit-preservation of the functors CAlgkan!D(k);R 7!HPpoly(R/
k) (resp. R 7!HC¡;poly(R/k)), for every animated k-algebra R, we get an exhaustive filtration
FilHKR
� on the Cartesian square

HC¡;poly(R/k)p^ ¡! HC¡(R/k)p^

 
¡

 
¡

HPpoly(R/k)p^ ¡! HP(R/k)p^

whose i-th associated graded piece grHKR
i is given by

FilHi dRR/k[2 i]p^ ¡! FilHi dRb R/k[2 i]p^

 
¡

 
¡

dRR/k[2 i]p^ ¡! dRb R/k[2 i]p^

where dRb R/k is the Hodge-completed derived de Rham cohomology of R/k.

Question 3. Is the HKR filtration in Construction 4.8 complete?

It is very natural to extend our definition to de-Nygaard-complete topological periodic cyclic
homology.

Definition 4.9. Let k be a t-bounded E1-ring, and C a dualizable presentable stable k-linear
1-category. Then the topological k-polynomial periodic cyclic homology TPpoly/k(C) (resp. the
topological k-polynomial negative cyclic homology TC¡;poly/k(C)) is defined to be the THH(k)-
de-completed T-Tate construction THH(C)�THH(k)T (resp. the THH(k)-de-completed homotopy T-
fixed points THH(C)�THH(k)T).

Topological k-polynomial periodic (resp. negative) cyclic homology, even after p-completion,
seems intractable in general, partially due to the global nature of its prismatization. The situation
is drastically simpler when the ring k= S is p-complete and perfectoid, thanks to the Bökstedt
periodicity of THH(S)p^. We recollect some notations and computations in [BMS19, Prop 6.2 & 6.3].
However, we view THH(S)tCp non-equivariantly as a TC¡(S)-module, which follows more closely
to the convention in [Rig25, Lem 2.1].

4.1. An attempt for this definition: a dualizable presentable stable k-linear 1-category C has bounded Tor-
amplitude if the coevaluation functor C_
D(k)C!D(k) sends compact objects to objects of bounded Tor-amplitude
in D(k).
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Remark 4.10. ([BMS19, Prop 6.2 & 6.3]) Let S be a perfectoid ring, A :=Ainf(S)=W (S[)
with Frobenius endomorphism ' :A!A, and � a chosen generator of the kernel ker(�) of Fontaine's
map � :A�S. Then the commutative square

TC¡(S)p^ !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
'p
hT

TP(S)p^

 
¡

 
¡

THH(S)p^ !!!!!!!!!!!!!!!!!!
'p

THH(S)tCp

is a pushout diagram of E1-rings, and its homotopy groups are given by

A[u; v]/(u v¡ �) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
v 7!'(�)�¡1

u 7!�
A[��]

 
¡

 
¡

R[u] = (A/ �)[u] !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !u 7!�
(A/'(�))[��]

;

where juj= j� j=2 and jv j=¡2, the vertical maps are A-linear, and the horizontal maps are '-
linear. The homotopy groups of the canonical map TC¡(S)p^!TP(S)p^ is given by the A-linear map

A[u; v]/(u v¡ �)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
v 7!�¡1

u 7!��
A[��]:

In particular, the THH(S)-module S=THH(S)/u in SpBT is perfect, which implies that

Lemma 4.11. Let S be a perfectoid ring, and M a THH(S)-module in Spg
<T. Then the canonical

map

M�THH(S)T
TP(S)
L StT¡! (M 
THH(S)S)�ST

is an equivalence after p-completion.

Corollary 4.12. Let S be a perfectoid ring, and C a dualizable presentable stable S-linear 1-
category. Then the commutative diagram

TC¡;poly/S(C) ¡! TC¡(C)

 
¡

 
¡

TPpoly/S(C) ¡! TP(C)

as an instance of (2.1) is Cartesian. If the assembly map HPpoly(C/S)!HP(C/S) is an equiva-
lence after p-completion4.2, then the horizontal assembly maps are equivalences after (p; ker(�))-
completion.

Proof. By Remark 2.2, this commutative diagram is Cartesian. When the assembly map HPpoly(C/
S)!HP(C/S) is p-completely an equivalence, then by Remark 4.10, it is the (modker(�)) reduc-
tion of the map TPpoly/S(C)! TP(C), thus the later is (p; ker(�))-completely an equivalence,
and the result follows. �

Similarly to Construction 4.8, we have

Construction 4.13. (Motivic filtration) Let S be a perfectoid ring, and let A :=Ainf(S). Then
by [BMS19], for every smooth S-algebra R, there is an exhaustive filtration FilM� , functorial in R,
on the canonical (p; ker(�))-completed4.3 map

TC¡(R)(p;ker(�))
^ ¡!TP(R)(p;ker(�))

^

4.2. By Proposition 4.4, this is the case when C=D(R) for some p-completely smooth E1-S-algebra R.
4.3. The p-completed TC¡(R)p^ and TP(R)p^ are automatically ker(�)-complete (since they are Nygaard-com-

plete), but it is conceptually better to phrase it after (p; ker(�))-completion, since the p-completed polynomial
versions might not be ker(�)-complete.
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whose i-th associated graded piece grMi is given by the canonical map

FilNi 'A� �R/A¡! 'A
� �R/A

for the Frobenius twisted prismatic cohomology. By Proposition 4.4 and Corollary 4.12, and
sifted-colimit-preservation of the functors CAlgSan!D(TC¡(S)); R 7! TPpoly/S(R) (resp. R 7!
TC¡;poly/S(R)), for every animated k-algebra R, we get an exhaustive filtration FilM� on the
Cartesian square

TC¡;poly/S(R)(p;ker(�))
^ ¡! TC¡(R)(p;ker(�))

^

 
¡

 
¡

TPpoly/S(R)(p;ker(�))
^ ¡! TP(R)(p;ker(�))

^

whose i-th associated graded piece is given by

FilNi 'A� �R/A ¡! FilNi 'A� �̂R/A
 
¡

 
¡

'A
� �R/A ¡! 'A

� �̂R/A

:

Remark 4.14. The construction of HKR filtration and motivic filtration on polynomial cyclic
theories is quite formal: one only needs a proposition similar to Proposition 4.4 and Corollary 4.12.
In particular, the above construction also adapts to the Breuil�Kisin case (as in [BMS19, §11]) and
the q-de Rham case.

Remark 4.15. The topological polynomial periodic cyclic homology should be comparable to
TC(¡1) as introduced in [Man24, §1]. In Section 5, we will discuss and compare to the construction
in the absolute case in an ongoing project of Devalapurkar�Hahn�Raksit�Yuan.

A natural question is whether the previous picture extends to relative prismatic cohomology
over an arbitrary base prism? When the base prism is transveral, we have the following expectation.

Remark 4.16. In a companion paper [Mao24b], we defined prismatic Hochschild homology HH�(C/
A) for a transversal prism (A; I) and a dualizable presentable stable A/I-linear 1-category C,
and formulated an HKR-type conjecture for p-completely smooth A/I-algebras. If that con-
jecture holds, then the p-completed (A; I)Cpr¡1-de-completed T/Cpr¡1-construction

¡
HH�(R/

A)Cpr¡1
��
(A;I)

C
pr¡1

¡
T/C

pr¡1
�
for animated (A/I)-algebra would carry an exhaustive filtration with

associated graded pieces equivalent to shifts of ('A� �R/A) 
AL (A/Ir). We will address this in
the future.

Up to our knowledge, it was not widely expected that the topological Hochschild homology as
a cyclotomic spectrum contains enough information for a de-Nygaard-completion such as Defini-
tion 4.9. However, in view of Efimov's rigidity of localizing motives, this is expected:

Remark 4.17. (M. Ramzi) Let k be a commutative ring, and G a finite group, A an E1-
algebra in SpgG, and E :Catk

perf!ModA(SpBG) a finitary symmetric monoidal localizing invariant.
Then the symmetric monoidal functor E factors uniquely through the presentably stable sym-
metric monoidal1-category Motloc;k, obtaining a functor Motloc;k!ModA(D(k)BG) in CAlg(PrStL ).
Efimov's rigidity theorem, as mentioned in [Efi24, Rem 4.3], tells us that the presentably stable
symmetric monoidal1-category Motloc;k is rigid, thus we get a unique strongly continuous functor
Motloc;k!ModA(D(k)BG)rig.

If we are in addition given a finitary symmetric monoidal factorization

Catk
perf!!!!!!!!!!!!E

~
ModA(SpgG)¡!ModA(D(k)BG)
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of E, where the functor E~ is localizing as well, then by Remark 2.7, we see that the strongly
continuous functor Motloc;k!ModA(D(k)BG)rig coincides with the composite functor

Motloc;k!!!!!!!!!!!!
E~

ModA(SpgG)¡!ModA(D(k)BG)rig:

Informally, this tells us that E~ �knows� everything about refined E.
Now we apply this to the finitary symmetric monoidal localizing invariant

E~ :=THH :Catk
perf¡!CycSpgen¡!ModTHH(k)(SpgG)

for any finite cyclic group G. It follows that the refinement of SpBG-valued THH is completely
determined by the functor E~, thus by the (genuine) cyclotomic THH. Roughly speaking, this
implies that the cyclotomic THH already contains �all� profinite or p-adic formal information,
including any de-Nygaard-completion.

5 The absolute case
In an ongoing work of Devalapurkar�Hahn�Raksit�Yuan, they propose another de-completion
THH� of topological negative cyclic homology for animated rings. In this section, we show that
our techniques apply to this situation as well, which leads to de-completed Borel completion (Def-
inition 5.4), giving rise to a localizing invariant on Z-linear categories corresponding to absolute
prismatic cohomology . We also compare de-completed Borel completion with de-completed homo-
topy fixed points and de-completed Tate construction (Remarks 5.7 and 5.8, Proposition 5.23,
and Corollary 5.26), and the construction in this section with previous constructions (Corol-
laries 5.31 and 5.35). We first recall their definition. Actually, our argument shows that THH�
extends to a localizing invariant for BPhni-linear categories Remark 5.32, which is independent
of choice of n.

Notation 5.1. Let G be a finite group (resp. T). We will denote by

(¡)h :SpgG¡!SpgG

(resp.

(¡)h :Spg<T¡!Spg
<T

) the Borel completion, which has a lax symmetric monoidal structure.

Construction 5.2. (Devalapurkar�Hahn�Raksit�Yuan) The functor

THH� :CAlgZ
an¡!ModTHH(Z)h(Spg

<T)

is defined to be the left derived functor of the functor

PolyZ
fg ¡! ModTHH(Z)h(Spg

<T)
R 7¡! THH(R)h:

By construction, we have a canonical map

THH�(R)¡!THH(R)h

in ModTHH(Z)h(Spg
<T), which is an equivalence when R is a finitely generated polynomial ring.

Remark 5.3. (Devalapurkar�Hahn�Raksit�Yuan) It follows immediately from the discussion
of [BL22, §6.2] (which explains the result in [BMS19] for animated rings) that, there exists a
motivic filtration on THH(R)Cp1 (resp. (THH(R)�Cp)Cp1/Cp) whose associated graded pieces are
given by twisted absolute Nygaard cohomology FilN� �Rf�g[2 �] (resp. twisted absolute prismatic
cohomology �Rf�g[2 �]).

To extend THH� to a localizing invariant, as in Definition 3.3, the key is to de-complete Borel
completion.
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Definition 5.4. Let G be a finite group, and A an E1-algebra in the symmetric monoidal 1-
category SpgG of G-spectra. Then the A-de-completed Borel completion, denoted by (¡)�A, is the
filtered-colimit-preserving approximation

RModA(SpgG)¡!RModAh(SpgG)

of the Borel completion. The same if we replace G by T, and the symmetric monoidal 1-category
SpgG of G-spectra by that Spg

<T of cyclonic spectra.

Remark 5.5. Let G be a finite group (resp. T), and A an E1-algebra in the symmetric monoidal
1-category SpgG (resp. Spg

<T) of G-spectra (resp. cyclonic spectra). As in Remark 2.4, the A-de-
completed Borel completion factors canonically through the base change along the Borel completion
map A!Ah.

Actually, the de-completed Borel completion is simply a base change.

Lemma 5.6. Let G be a finite group, and A an E1-algebra in the symmetric monoidal 1-category
SpgG of G-spectra. Then the A-de-completed Borel completion (¡)�A coincides with the base change
functor

(¡)
ALAh :RModA(SpgG)¡!RModAh(SpgG):

The same if we replace G by T, and SpgG by Spg
<T.

Proof. We start with the case that G is a finite group. By Remark 5.5, without loss of generality,
we may assume that A is Borel complete, and by definition, it suffices to check that, for every G-
orbit [G/H], the tensor product [G/H]
A is Borel complete. This follows from the dualizability
of [G/H] in SpgG, cf. the proof of [BCN21, Ex 2.15].

The case for G=T is similar: we have to show that [T/Cn]
A is Borel complete, and it suffices
to restrict to SpgCm for every m2N>0, and [T/Cn] is dualizable there as well. �

It then follows from Remark 2.4 that de-completed homotopy fixed points and de-completed
Tate construction factor through de-completed Borel completion, thus the latter contains more
information than the former. When the group is finite, this factorization takes a very simple form:

Remark 5.7. Let G be a finite group, and A an E1-algebra in the symmetric monoidal1-category
SpgG of G-spectra. By restricting to compact objects in RModA(SpgG), we see that the A-de-
completed homotopy G-fixed points (¡)�AG factors as

RModA(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�A
RModAh(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)G

RModAhG(Sp):

Remark 5.8. Let G be a finite group, and A an E1-algebra in the symmetric monoidal1-category
SpgG of G-spectra. By restricting to compact objects in RModA(SpgG), we see that the A-de-
completed G-Tate construction (¡)�AG factors as

RModA(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�A
RModAh(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�fegG

RModAhG(Sp);

where (¡)�fegG is the geometric fixed points with respect to the family feg of subgroups [AMR21,
Def 5.7]. When G is a cyclic p-group, we have (¡)�fegG=(¡)�Cp.

Actually, this factorization also holds when G =T for certain bases which we establish in
Proposition 5.23 and Corollary 5.26. Now we formulate the main comparison theorem

Theorem 5.9. Let R be a smooth E1-Z-algebra of bounded Tor-amplitude5.1. Then the assembly
map

THH(R)�THH(Z)¡!THH(R)h

in ModTHH(Z)h(Spg
<T) is an equivalence after p-completion.

5.1. Since the projective dimension of Z is finite, this is the same as t-boundedness.
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Before giving its proof, we mention an immediate consequence: since finitely generated poly-
nomial rings are smooth, it follows that

Corollary 5.10. After p-completion, the functor THH� factors as

CAlgZ
an!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !Perf(¡)

CatZ
perf¡!ModTHH(Z)h(Spg

<T)p^;

where the second functor is the composite functor

CatZ
perf!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !THH

ModTHH(Z)(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

((¡)�THH(Z))p^
ModTHH(Z)h(Spg

<T)p^;

being the proposed localizing invariant extending THH�.

The strategy to prove Theorem 5.9 is similar to that for Corollary 4.12. However, the cyclonic
spectrum THH(Z) is more complicated than THH(S) for perfectoid rings S. Nevertheless, the
following two computational inputs, that we learnt from Robert Burklund and Jeremy Hahn,
are sufficient.

Lemma 5.11. ([BM94]) Let p be a prime. Then we have

��(THH(Z)/p)=�Fp[�1]
¡(�1)

with deg �1=2 p and deg�1=2 p¡1. Moreover, the cyclotomic Frobenius THH(Z)!THH(Z)tCp

realizes ��(THH(Z)tCp/p) as ��(THH(Z)/p)[�1
¡1].

Remark 5.12. More generally, for every n2Z>¡1, [ACH24, Prop 2.7] shows that, for the n-th
truncated Brown�Peterson spectrum BPhni, we have

��(THH(BPhni;Fp))=�Fp[�n+1]
¡(�1; : : : ; �n+1)

where deg �n+1=2 pn+1 and deg �i=2 pi¡ 1 for i=1; : : : ; n+1. As explained in the paragraphs
following [HRW22, Thm 6.1.2], the cyclotomic Frobenius THH(BPhni)!THH(BPhni)tCp realizes
the homotopy groups of the target modulo (p; v1; : : : ; vn) as the localization of the source modulo
(p; v1; : : : ; vn) at �n+1.

Lemma 5.13. ([BM94]) Let p be a prime. Then the class �12�2p(THH(Z)/p) lifts to a T-equi-
variant class �~1 satisfying the relation a��~1= v1, where a� is the Euler class in [ BL22, Ex 6.1.3],
and v1 is the canonical class in �2p¡2(TC¡(Z)/p)5.2.

We give a proof of Proposition 5.15, since we need similar techniques to establish our main
results.

Lemma 5.14. Let M be a t-bounded T-equivariant spectrum. Then for every composite number
n2N>0, the proper Cn-Tate construction5.3 M�Cn is contractible.

Proof. We may assume that M is concentrated in degree 0. Then by the lax symmetric monoidal
structure on (¡)�Cn, we may assume that M =Z. Then this is established in [MNN19, Prop 5.24]
(cf. [AMR17a, Rem 2.18]). �

Proposition 5.15. (Devalapurkar�Hahn�Raksit�Yuan) The spectrum (THH(Z)h)�Cn is
contractible for any composite number n2N>0.

Proof. Equivalently, we have to show that the proper Cn-Tate construction THH(Z)�Cn is con-
tractible for every composite number n2N>0. Fix a prime factor p of n, note that it is already
p-complete, equipped with proper Tate diagonal maps

THH(Z)¡!THH(Z)�Cn

5.2. When p is an odd prime, it comes from v12�2p¡2(S/p). When p=2, over the sphere, only v142�8(S/2)
is well-defined.

5.3. See [AMR21, Def 4.5].
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as explained in [AMR17b, §0.4], thus THH(Z)�Cn acquires a Z-module structure, and therefore we
may check THH(Z)�Cn=0 after modulo (p; v1). It follows from Lemma 5.14 that

(THH(Z)/(p; �~1))�Cn=0;

and by Lemma 5.13, we are done. �

Corollary 5.16. (Devalapurkar�Hahn�Raksit�Yuan) LetM be a THH(Z)h-module in Spg
<T.

Then the genuine Cp-fixed points MCp and the geometric Cp-fixed points M�Cp, viewed as objects
in ModTHH(Z)hCp(Sp

g<(T/Cp)), are Borel complete.

Proposition 5.15 allows us to reduce to analyze de-completed Cp-Tate construction, by joint
conservativity of f(¡)�Cn jn2N>0g and Remark 5.8:

Corollary 5.17. Let M be a THH(Z)h-module in Spg
<T. Then the assembly map

M
�THH(Z)h¡!Mh

is an equivalence after p-completion if and only if the assembly map

M
�THH(Z)hCp¡!M tCp

is an equivalence after p-completion.

Proof of Theorem 5.9. It follows from Corollary 5.17 and Lemma 5.18. �

It remains to establish the following version of Lemma 4.6 for THH:

Lemma 5.18. Let R be an E1-Z-algebra with bounded Tor-amplitude in D(Z), and M a perfect
R-R-bimodule in D(Z). Then the assembly map

THH
¡
R;M
RLCp

��THH(Z)Cp¡!THH
¡
R;M
RLCp

�
tCp

is an equivalence after p-completion.

Proof. We mimick the proof of Lemma 4.6. By the exactness of both sides in M , we may assume
thatM is the free R-R-bimodule R
R of rank 1. Then the map in question becomes the assembly
map

THH(Z;R
Z
Lp)�THH(Z)Cp¡!THH

¡
Z;R
Z

LCp
�
tCp

which follows from Lemma 5.19, being a polygonic THH version of Lemma 4.7. �

Lemma 5.19. Let M be a Z-module spectrum of bounded Tor-amplitude. Then the assembly map

THH(Z;M
Z
Lp)�THH(Z)Cp¡!THH(Z;M
Z

Lp)tCp

is an equivalence after p-completion.

Proof. Again, since both sides are exact in M , we may assume thatM is a flat Z-module, and the
result is true for finite free Z-modules M . By Lazard's theorem, the flat Z-module M is a filtered
colimit of finite free modules, thus it suffices to show that the functor

ModZ
[ ¡! Spp^

M 7¡! (THH(Z;M
Z
Lp)tCp)p^

preserves filtered colimits, where ModZ
[ is the category of flat Z-modules. Note that THH(Z;

M
Z
Lp)tCp acquires a THH(Z)tCp-module structure, and in particular, a Z-module structure, thus

v1=0 on it. Now by Lemma 5.13, we have

THH(Z;M
Z
Lp)tCp/(p; v1)'

¡
THH

¡
Z;M
pLp

�
/(p; �~1)

�
tCp

and as (non-equivariant) spectra, we have

THH(Z;M
Z
Lp)/(p; �~1)' (THH(Z)/(p; �1~ ))
Z

LM
Z
Lp
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which is bounded, and preserves filtered colimits in M . The result the follows from the fact that
(¡)tCp preserves uniformly bounded filtered colimits. �

Finally, we relate de-completed homotopy fixed points and de-completed Tate construction to
de-completed Borel completion when the base is THH(Z)h. We would thank Georg Tamme for such
a question. The point is that, as in the proofs of Proposition 5.15 and Lemma 5.18, after (p; v1)-
completion, the base THH(Z)h is close to be t-bounded. We start with some simple lemmas.

Lemma 5.20. Let V 2Sp! be a finite spectrum, and A an E1-ring such that A
V =0. Then for
every right A-module M, we have M 
V =0.

Proof. Note thatM is a retract of M 
A as a spectrum, thusM 
V is a retract of M 
A
V =0
as a spectrum. �

Remark 5.21. In our applications, we mainly take V to be the Smith�Toda complex S/(p; v1).

Lemma 5.22. Let V 2Sp! be a finite spectrum, and A0!A a map of E1-algebras in SpBT such
that A0
V is t-bounded below. Suppose that the spectrum A0

tCp
V, which is in fact equivalent to
(A0
V )tCp, is contractible. Then

1. for every right A-module M, the spectrum (M tT)p^
V is contractible; and

2. the functor

((¡)hT)p^
V :RModA(SpBT)¡!Spp^

preserves filtered colimits.

Proof. For the contractibility of (M tT)p^
V , or equivalently, that of M tT
(V /p), by Lemma 5.20
and the lax symmetric monoidal structure on (¡)tT, it suffices to show the contractibility of
(A0tT)p^
V . But then

(A0tT)p^
V ' ((A0
V )tT)p^

' ((A0
V )tCp)h(T/Cp)

' 0;

where the second equivalence follows from the t-bounded-belowness of A0
V and [NS18, Lem II.4.2].
The filtered-colimit-preservation of the functor ((¡)hT)p^
V follows directly from the canonical

fiber sequence

�(¡)hT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !NmT (¡)hT¡! (¡)tT

and the Tate vanishing established above. �

Proposition 5.23. Let A0!A be a map of E1-algebras in SpBT, and V 2Sp! a finite spectrum
such that A0
V is t-bounded. Then

1. every ACp-module in Spg
<(T/Cp) is Borel-complete up to Bousfield V-localization; and

2. the p-completed de-completed homotopy fixed points functor

((¡)�AT)p^ :RModA(Spg
<T)¡! Spp^

coincides with the p-completed genuine Cp1-fixed points functor up to Bousfield V-localiza-
tion, and the p-completed de-completed Tate construction functor

((¡)�AT)p^ :RModA(Spg
<T)¡!Spp^

coincides with the composite functor

RModA(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

RModA�Cp(Sp
g<(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)Cp1/Cp

Spp^ (5.1)

up to Bousfield V-localization.
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Proof. Firstly, for every m2N>1, by Lemma 5.14, we have (A0
Cp)�Cm
 V ' (A0
 V )�Cmp' 0.

Then it follows from Lemma 5.20 and the lax symmetric monoidal structure on (¡)�Cp and (¡)Cm
that

1. (ACp)�Cm
V =0, and thus

2. for every right ACp-module M in Spg
<(T/Cp), we have M�Cm
V =M�Cm
V =0:

In particular, every right ACp-module in Spg
<(T/Cp) is Borel-complete up to Bousfield V -localiza-

tion.
By construction, on compact objects, we have the desired results. It suffices to show that the

functors (¡)Cp1 and ((¡)�Cp)Cp1/Cp preserve filtered colimits.
Note that (¡)Cp1= ((¡)Cp)Cp1/Cp, that is to say, we may write both functors (¡)Cp1 and

((¡)�Cp)Cp1/Cp as a composite

RModA(Spg
<T)¡!RModACp(Sp

g<(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)Cp1/Cp

Spp^;

where we are tacitly using the lax symmetric monoidal structure on the natural transformation
(¡)Cp) (¡)�Cp. Note that the first functor (¡)�Cp or (¡)Cp preserves filtered colimits, thus it
suffices to see that the second functor (¡)Cp1/Cp preserves filtered colimits up to Bousfield V -
localization.

We are now reduced to show that the functor

RModAhCp(Sp
B (T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h(T/Cp)
V

Spp^

preserves filtered colimits. By examining the fiber sequence

� (¡)h(T/Cp)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
NmT/Cp (¡)h(T/Cp)¡! (¡)t(T/Cp)

It remains to show that, for every rightAhCp-moduleM in SpB (T/Cp), we have (M t(T/Cp))p^
V =0.
Actually, for every right A0

hCp-module M , the lax symmetric monoidal structure on (¡)t(T/Cp)

gives rise to a ((A0
hCp)t(T/Cp))p^-module structure on (M t(T/Cp))p^, and since A0
V is t-bounded,

by Lemma 5.24, we have

((A0
hCp)t(T/Cp))p^
V ' (((A0
V )hCp)t(T/Cp))p^

' 0

and thus (M t(T/Cp))p^
V =0 by Lemma 5.20. �

We need the following consequence of the Tate fixed point lemma.

Lemma 5.24. Let M be a t-bounded T-equivariant spectrum. Then ((MhCp)t(T/Cp))p^=0.

Proof. By dévissage, we reduce to the case thatM is concentrated in degree 0. In this case, we have

((MhCp)t(T/Cp))/p ' (MhCp)t(Cp2/Cp)

' 0;

by the Tate fixed point lemma and [NS18, Lem IV.4.12]. �

Example 5.25. Let k be an animated ring, and C a presentable stable k-linear1-category. Then
by Proposition 5.23, we have

HC¡;poly(C/k)p^ = ((HH(C/k)�k)Cp1)p^;
HPpoly(C/k)p^ = (((HH(C/k)�k)�Cp)h(Cp1/Cp))p^

= ((THH(C)
THH(k)
L ktCp)h(T/Cp))p^:

In retrospect, the object (THH(C)
THH(k)
L ktCp)h(T/Cp) appeared [Dev23, Rem 3.5.6] in the even

more general setup of k being an E1-ring.
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Now we deduce the comparison over THH(R)h for every E1-Z-algebra R.

Corollary 5.26. Let A be an E1-THH(Z)-algebra in SpBT. Then the (p; v1)-completed de-com-
pleted homotopy fixed points functor

((¡)�AT)(p;v1)
^ :RModA(Spg

<T)¡! Sp(p;v1)
^

coincides with the (p; v1)-completed genuine Cp1-fixed points functor, and the (p; v1)-completed
de-completed Tate construction functor

((¡)�AT)(p;v1)
^ :ModA(Spg

<T)¡! Sp(p;v1)
^

coincides with the composite functor

ModA(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

ModA�Cp(Sp
g<(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)Cp1/Cp

Sp(p;v1)
^ :

Proof. As a very special case of [HW22, Thm G], the spectrum TR(Z)/(p; v1) is t-bounded. The
result then follows from Proposition 5.23 by taking V =S/(p; v1), and A0=TR(Z)h. �

Remark 5.27. In Corollary 5.26, we can replace Z by BPhni, and (p; v1; : : : ; vn+1) in place of
(p; v1), for which we need the full [HW22, Thm G].

Remark 5.28. Let S be a perfectoid ring. Then the image of �12 �2p(THH(Z)/p) under the
map THH(Z)!THH(S) is �p up to a multiplier of a unit, where �2�2(THH(S)p^) is the Bökstedt
element. To see this, when S=Fp, this is established in [BM94], which implies the case for S being
a perfect Fp-algebra, since the map THH(Z)!THH(S) factors through THH(Fp). The general
case follows follows by considering the composite

THH(Z)¡!THH(S)¡!THH
¡
S/ p S

p �
and note that S/ pS

p
is a perfect Fp-algebra.

Example 5.29. Let S be a perfectoid ring, and C a dualizable presentable stable S-linear 1-
category. Then we have

TC¡;poly/S(C/S)(p;�)^ = ((THH(C)�THH(S))Cp1)(p;�)^ ;

TPpoly/S(C/S)(p;�)^ = (((THH(C)�THH(S))�Cp)Cp1/Cp)(p;�)^ :

Indeed, they follow from Corollary 5.26 and Remark 5.28 by taking A :=THH(S) (where a��~ = �
for the generator �~ 2�2(TC¡(S)p^) up to a complex orientation, and a��~1= v1).

Finally, we show that de-completed Borel completion over THH(S) for perfectoid rings S, and
over Z, are �the same� as over THH(Z).

Proposition 5.30. The assembly map THH(S)�THH(Z)!THH(S)h in ModTHH(Z)h(Spg
<T) is an

equivalence after p-completion.

Proof. By Corollary 5.17 and Lemmas 2.10 and 5.6, it is equivalent to show that the map

THH(S)
THH(Z)
L THH(Z)tCp¡!THH(S)tCp

induced by the cyclotomic Frobenius THH(S)!THH(S)tCp is an equivalence after modulo p, but
this follows immediately from Remark 5.28. �

It then follows from Lemma 5.6 that

Corollary 5.31. Let M be a THH(S)-module in Spg
<T. Then the assembly map

M �THH(Z)¡!M �THH(S)

in ModTHH(Z)h(Spg
<T) is an equivalence after p-completion.
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Remark 5.32. More generally, we may replace Z by any truncated Brown�Peterson spectrum.
Indeed, for ¡1�m<n, the assembly map

THH(BPhni)�THH(BPhmi)¡!THH(BPhni)h

in RModTHH(BPhmi)h(Spg
<T) is an equivalence after (p; v1; : : : ; vn)-completion, as a consequence

of Remark 5.12. In particular, this shows that THH� extends to a localizing invariant

CatBPhni
perf !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !THH

RModTHH(BPhni)(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�THH(BPhni)

RModTHH(BPhni)h(Spg
<T)(p;v1; : : : ;vn)

^

which is independent of choice of n2Z>¡1 in the sense of compatibility with forgetful functors.

On the other hand, we can also deduce the result for Z from the case S=Fp:

Proposition 5.33. The assembly map Z�THH(Z)¡!Z in ModTHH(Z)h(Spg
<T) is an equivalence.

Proof. Since Q2CAlg(Spg<T) is Borel, it suffices to show this equivalence after modulo every
prime p. By Corollary 5.17 and Lemmas 2.10 and 5.6, we are reduced to show that the map

�>0(Fp
tCp)
THH(Z)

L THH(Z)tCp¡!Fp
tCp

is an equivalence, where the E1-map THH(Z)! �>0(Fp
tCp) is the composite

THH(Z)!!!!!!!!!!!!!!' �>0(THH(Z)tCp)¡! �>0(ZtCp)¡! �>0(Fp
tCp)

where the first equivalence is the Segal conjecture for THH(Z). Now this composite can be rewritten
as the composite

THH(Z)!!!!!!!!!!!!!!' �>0(THH(Z)tCp)¡! �>0(THH(Fp)tCp)¡! �>0(Fp
tCp);

and we have a composite pushout diagram

�>0(THH(Z)tCp) ¡! �>0(THH(Fp)tCp) ¡! �>0(Fp
tCp)

 
¡

 
¡

 
¡

THH(Z)tCp ¡! THH(Fp)tCp ¡! Fp
tCp

of E1-rings, where the left pushout is Proposition 5.30, and the right pushout is simply detected
by both horizontal maps are inverting the Bökstedt element �02�2(THH(Fp)tCp). �

Remark 5.34. Let p be an odd prime. [DR25, Prop 5.2.1] implies that the map THH(Z)tCp!ZtCp

coincides with the map THH(Z)tCp!THH(Fp)tCp induced by the ring map Z!Fp.

Question 4. Is the statement of Remark 5.34 true when p=2?

Corollary 5.35. Let M be a Z-module in Spg
<T. Then the assembly map

M �THH(Z)¡!M �Z

in ModTHH(Z)h(Spg
<T) is an equivalence.

6 Noncommutative crystalline--de Rham comparison revis-
ited

In this section, we explain that original ideas in [PV19], along with an observation by A. Raksit,
adapt to de-completed case, which leads to a comparison (Corollary 6.28), which �authentically�
corresponds to the crystalline�de Rham comparison. As explained in Remark 6.27, the argument in
[DR25] is enough for this comparison when p is an odd prime, so our result is stronger only when
p=2.
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The key is to produce a map HH(Fp/Z)�ZCp! ZtCp (Construction 6.15). As A. Raksit
observed, up to (¡)tCp, we can replace HH(Z[t]/Z) by dRZ[t]/Z, and consequently, we can iden-
tify HH(Fp/Z)�ZCp with dRFp/Z

tCp . Combining with the map dRFp/Z!Z(p) induced by the PD-
structure on (p)�Z(p), we get the map we want. As a consequence, we get a map THH(Fp)tCp!
HH(Fp/Z)�ZCp!ZtCp. We then show that this is an equivalence (Proposition 6.25), the blue-
print of whose proof can be found after Construction 6.16.

We start with A. Raksit's observation. Let k be a commutative ring, and R a smooth com-
mutative k-algebra. In general, we are only equipped with an HKR-filtration on the periodic cyclic
homology whose associated graded pieces are equivalent to shifts of Hodge-completed derived de
Rham cohomology of R/k. However, when R is of relative dimension�1, the filtration in question,
along with the commutative ring structure6.1, is simply extended from the filtration on ktT, which
was observed by A. Raksit as in Construction 6.13. A slight improvement of his argument gives a
stronger result: we compare associated [0; 1]-graded pieces of HKR-filtered Hochschild homology
and Hodge-filtered de Rham cohomology in Corollary 6.12. For this purpose, we first review some
facts on homotopy coherent cochain complexes with weights in [0;1], which is systematically studied
in K. Magidson's work [Mag24].

Notation 6.1. Let k be a commutative ring. We denote by DG¡DAlgk the 1-category of h¡-differ-
ential graded derived commutative k-algebras [ Rak20, Nota 5.3.1], and DG¡

[0;1]DAlgk�DG¡DAlgk
the full subcategory of objects whose weights are concentrated in degrees [0; 1].

Remark 6.2. ([Mag24, §3.3]) Let k be a commutative ring. Then the1-category DG¡
[0;1]DAlgk

is equivalent to the 1-category of triples (A;M ; �) where

� A is a derived commutative k-algebra;

� M is an A-module; and

� � :A!M is a derivation (or equivalently, a map LA/k!M of A-modules).

Given a triple (A;M ; �) as above,the corresponding object in DG¡
[0;1]DAlgk is equivalent to the

square-zero extension of A(0) by M(1)[¡1] determined by the derivation �, whose underlying k-
module spectrum is equivalent to fib(A!M).

The key construction is the following:

Construction 6.3. Let k be a commutative ring. We construct a functor

DG¡
[0;1]DAlgk¡!DAlg(D(k)BT)

as follows. Let (A;M ; �) be a triple corresponding to an object of DG¡
[0;1]DAlgk as in Remark 6.2.

Equip A and M with trivial T-action, we get a derivation � :A!M in DAlg(D(k)BT). Now we

compose this derivation with the map M =M 
 S !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !M
a�
M 
 S�=��M , obtaining another

derivation � :A!��M in DAlg(D(k)BT). We take the square-zero extension
�
A!!!!!!!!� ��M

�
of A

by ��M [¡1] determined by the derivation � . This gives rise to a functor

DG¡
[0;1]DAlgk ¡! DAlg(D(k)BT)

(A;M ; �) 7¡!
�
A!!!!!!!!� ��M

�
:

Moreover, the map M 
 a� :M! ��M induces a map
�
A !!!!!!!!!!� M

�
!

�
A !!!!!!!!� ��M

�
of derived

commutative algebras in D(k)BT, where
�
A!!!!!!!!!!� M

�
is equipped with trivial T-action.

Remark 6.4. In fact, in Construction 6.3, we can endow the target a filtered circle action. Since
this notion is not used in the text, we will not discuss this filtered enhancement.

We need the following categorification of Tate construction.

6.1. The key is the commutative ring structure.
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Definition 6.5. ([PV19, §2]) Let k be a commutative ring spectrum. The T-Tate category
D(k)tT is the quotient category

D(k)BT/hM 
T jM 2D(k)i

where hM 
T jM 2D(k)i�D(k)BT is the stable subcategory generated by induced T-representa-
tions.

The magic of Construction 6.3 is that it does not change the Tate construction, which is formally
formulated as follows.

Proposition 6.6. Let k be a commutative ring, and (A;M ; �) a triple corresponding to an object
of DG¡

[0;1]DAlgk. Then the map �
A!!!!!!!!!!� M

�
¡!

�
A!!!!!!!!� ��M

�
in DAlg(D(k)BT) constructed in Construction 6.3, where

�
A!!!!!!!!!!� M

�
is equipped with trivial T-

action, is an equivalence after passing along the quotient functor D(k)BT!D(k)tT.

Proof. The point is that fib(a� :S!S�)'S
T is an induced T-representation. �

Let k!R be a smooth map of commutative algebras. The next goal, Corollary 6.12, is to show
that, if we apply this construction to the truncated de Rham complex

0¡!R!!!!!!!!!!d 
R/k
1 ¡! 0

we get the associated [0; 1]-graded piece of the Hochschild homology HH(R/k). We explain this
more formally for animated k-algebras R as follows.

Remark 6.7. Let k be a commutative ring. The forgetful functor D(k)BT= coAlgk[T]_(D(k))!
D(k) maps derived commutative algebras in D(k)BT to derived commutative k-algebras, and it
carries the adic filtration on a map f in DAlg(D(k)BT) to the adic filtration on the underlying
map f in DAlgk.

Lemma 6.8. Let k be a commutative ring, and A an animated commutative k-algebra. Then the
HKR-filtration on HH(A/k), as a filtered derived commutative algebra in D(k)BT, coincides with
the adic filtration on the map HH(A/k)!A in DAlg(D(k)BT).

Proof. By the universal property of adic filtration, we get a map

Filad(HH(A/k)!A)¡!FilHKRHH(A/k)

in FilDAlg(D(k)BT). To show that this is an equivalence, by conservativity, it suffices to show the
equivalence after passing along the forgetful functor Fil DAlg(D(k)BT)!Fil DAlgk, and then it
follows from Remark 6.7 that the left hand side is still the adic filtration of the map HH(A/k)!A,
and on the level of Fil DAlgk, this equivalence is true for polynomial k-algebras A, thus also for
animated k-algebras A. �

Remark 6.9. Let C beD(k) orD(k)BT, andA!B be a map of derived commutative algebras in C.
Then the derived commutative algebra grad

[0;1](A!B) can be realized as the square-zero extensionh
B!!!!!!!!!!d LB!!!!!!!!!!!!!!!!!!!!!!!!!!

can
LB/A

i
of B by LB/A[¡1] in C.

Lemma 6.10. Let k be a commutative ring, and A a derived commutative k-algebra. Then the
canonical map

LHH(A/k)/k
HH(A/k)
L A¡!LA/k

in ModA(D(k)BT) can be identified with the map

LA/k
kL k[T]¡!LA/k
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induced by the T-equivariant projection T!�.

Proof. Let X 2An be an anima, and BX :=A
k
LX the X-th tensor power of A. Then we have an

equivalence

LBX/k
BXL A'LA/k
kL k[X]

in ModA(D(k)), which is functorial inX 2An. Now we restrict this to the full subcategory (BT)B�
An spanned by fT; �g, we obtained the identification that we want. �

Proposition 6.11. Let k be a commutative ring, and A an animated commutative k-algebra. Then
the derived commutative algebra grHKR

[0;1] HH(A/k) can be identified with the square-zero extensionh
A!!!!!!!!!!d LA/k!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

LA/k
a�
��LA/k

i
of A by ��¡1LA/k'LA/k[1] (via a complex orientation of k) in DAlg(D(k)BT).

Proof. By Remark 6.9 and Lemma 6.8, it suffices to identify the map

f :LA/k¡!LA/HH(A/k)

in ModA(D(k)BT) with the map

LA/k!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
LA/k
a�

��LA/k:

We examine the transitivity sequence

LHH(A/k)/k
HH(A/k)
L A¡!LA/k!!!!!!!!

f
LA/HH(A/k)

in ModA(D(k)BT) associated to the composite map

k¡!HH(A/k)¡!A

in DAlg(D(k)BT). By Lemma 6.10, the map f fits into a fiber sequence

LA/k
kL k[T]¡!LA/k!!!!!!!!
f
LA/HH(A/k)

in ModA(D(k)BT), and the result follows from the fiber sequence

S!!!!!!!!!!!!!!!!!!a� S�¡!S
T: �

Corollary 6.12. Let k be a commutative ring, and A an animated commutative k-algebra. Then
the derived commutative algebra grHKR

[0;1] HH(A/k)2DAlg(D(k)BT) can be identified with the image
of L
A/k

[0;1]2DG¡
[0;1]DAlgk under the functor in Construction 6.3.

Now we restrict to smooth maps of dimension�1. In this case, both HKR-filtration and Hodge-
filtration are concentrated in weights [0; 1], thus we have

Construction 6.13. (Raksit) Let k be a commutative ring, and A a smooth k-algebra of dimen-
sion� 1. Then by Construction 6.3 and Corollary 6.12, we get a map

dRR/k¡!HH(R/k)

in DAlg(D(k)BT), which becomes an equivalence in D(k)tT by Proposition 6.6. This construction
is functorial in smooth maps k!R of relative dimension� 1.

Now we want to apply this to analyze the de-completed Cp-Tate construction HH(Fp/Z)�ZCp.

Remark 6.14. The composite lax symmetric monoidal functor

D(Z)BT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h
ModZ(Spg

<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ZCp
ModZtCp(Sp

B (T/Cp))

factors canonically through D(Z)tT.

Noncommutative crystalline�de Rham comparison revisited 25



Construction 6.15. Applying Construction 6.13 to the coCartesian diagram

k[t] !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !t 7!p
k

 
¡

 
¡

k ¡! k
Z
LFp

;

of animated k-algebras, we get a map

dR(k
Z
LFp)/k¡!HH(k
Z

LFp/k)�k

of derived commutative algebras in ModZ(Spg
<T), which becomes an equivalence after taking

(¡)�Cp by Remark 6.14. In particular, when k=Z(p), the map

dRFp/Z(p)=DZ(p)(p)¡!Z(p)

of augmented (derived) commutative Z(p)-algebras (where DZ(p)(p) is the PD-envelope of (p)�
Z(p)), induced by the PD-structure on (Z(p); (p)), gives rise to a map

HH(Fp/Z)�ZCp!ZtCp

of E1-ZtCp-algebras in SpB (T/Cp).

Construction 6.16. Composing with the map THH(Fp)h!HH(Fp/Z)�Z of E1-THH(Z)h-alge-
bras in Spg

<T, we get a composite map

THH(Fp)tCp¡!HH(Fp/Z)�ZCp¡!ZtCp

of E1-THH(Z)tCp-algebras in SpB (T/Cp).

Remark 6.17. The map in Construction 6.16 lives in the Borel equivariant world, while our
construction relies on genuine equivariant homotopy theory.

Our next goal is to show that the map in Construction 6.16 is an equivalence. We check it after
modulo p. The point is that, although we do not know whether this map on the nose acquires a
Z-linear structures, its modulo p has an Fp-linear structure. More precisely, our argument follows
the following strategy6.2 in [PVV18]:

1. Give the composite map THH(Fp)tCp!ZtCp!Fp
tCp a Z-linear structure (Construction 6.20);

2. Show that, under this Z-linear structure, the induced map THH(Fp)tCp
Z
LFp!Fp

tCp is an
equivalence (Lemma 6.21);

3. Show that the induced map above coincides with the modulo p reduction of the map
THH(Fp)tCp!ZtCp in Construction 6.16 (Lemma 6.24).

Remark 6.18. Concretely, the map DZ(p)(p)!Z(p) is given by the map

Z(p)

�
t;
t2

2!
;
t3

3!
; : : :

�
/(t¡ p) ¡! Z(p)

tn

n!
7¡! pn

n!
;

and therefore, after (derived) modulo p, it becomes the augmentation map

Fp

"
t;
tp

p
;
tp
2

pp+1
; : : :

#
/(t) ¡! Fp

tp
r

pp
r¡1+ � � �+1

7¡! 0:

It follows that, the map dRFp/Z(p)
Z(p)
L Fp!Fp induced by the PD-structure on (p)�Z(p) coincides

with the map dRk
Z
LFp/k!dRk/k= k induced by the multiplication map k
Z

LFp!k, for derived
commutative Fp-algebras k.

6.2. We thank A. Petrov for explaining this.
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We get a de-completed version of [PV19, Cor 2.7] (without restricting to odd primes):

Corollary 6.19. The modulo p reduction of the map HH(Fp/Z)�Cp!ZtCp of E1-ZtCp-algebras
in SpB (T/Cp) in Construction 6.15 becomes the map HH(k
Z

LFp/k)�Cp!HH(k/k)�Cp of E1-
Fp
tCp-algebras in SpB (T/Cp) induced by the multiplication map k
Z

LFp! k, for k=Fp6.3.

Construction 6.20. Let k=Fp. The composite map in Construction 6.16 fits into a commutative
diagram

THH(k)tCp ¡! HH(k/Z)�ZCp ¡! ZtCp

 
¡

 
¡

HH(k
Z
LFp/Fp)

�FpCp ¡! Fp
tCp

of E1-THH(Z)tCp-algebras in SpB (T/Cp). It follows from Corollary 6.19 that the composite map
THH(k)tCp!Fp

tCp is equivalent to applying (¡)tCp to the map

THH(Fp)¡!HH(Fp/Fp)

induced by the map (S!Fp)! (Fp!Fp) of maps of E1-rings, which acquires a structure of
maps of E1-ZtCp-algebras in SpB (T/Cp). This map is also the same as the multiplication map
THH(Fp)!Fp.

Lemma 6.21. The map THH(Fp)tCp
Z
LFp!Fp

tCp induced by the ZtCp-linear map THH(Fp)tCp!
Fp
tCp in Construction 6.20 is an equivalence.

Proof. The composite map Z!THH(Fp)!Fp is the canonical map since it is a map of com-
mutative algebras in the heart of D(Z)BT. By [NS18, Cor IV.4.13], the first map becomes an
equivalence after taking (¡)tCp, and the result follows. �

Finally, we are in the following slightly tricky situation: given two Z-modules M and N , along
with a (non-Z-linear) map f :M!N . Suppose that the composite map g :M!N!N 
Z

LFp
carries a Z-linear structure, which induces a map M 
Z

LFp!N 
Z
LFp. We claim that this map

coincides with the modulo p reduction of f . We break this into two steps. The first is to produce
the map M /LFp!N 
Z

LFp without the Z-linear structure on g.

Construction 6.22. Let C be a presentable stable 1-category, and M 2 C an object, and L 2
ModFp(C) an Fp-module in C, and f :M!L a map in C. This gives rise to a composite map

M /p¡!L/p'L
Z
LFp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !mult

L:

Lemma 6.23. Let C be a presentable stable 1-category, and M 2ModZ(C) a Z-module in C, and
L2ModFp(C) an Fp-module in C, and f :M!L a Z-linear map in C. Then the map M 
Z

LFp!L

in ModFp(C), as a map in C, coincides with the map M /p!L in Construction 6.22.

Proof. The map f 
Z
LFp :M 
Z

LFp!N 
Z
LFp in ModFp(C), as a map in C, coincides with the

map f /p :M /p!N /p. The result follows. �

Lemma 6.24. Let C be a presentable stable 1-category, with M and N two Z-modules in C, and
f :M!N a map in C. We give the composite map g :M !!!!!!!!f N!N 
Z

LFp a Z-linear structure,
which induces a map h :M 
Z

LFp!N 
Z
LFp in ModFp(C). Then as a map in C, the map h coincides

with the map f /p.

Proof. By Lemma 6.23, the map h, as a map in C, coincides with the composite

M /p!!!!!!!!!!!!!!!!!!!!!!!!!!g/p (N 
Z
LFp)/p'N 
Z

LFp
Z
LFp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !idN
mult

N 
Z
LFp:

6.3. Although we only apply to the case that k=Fp, this notation allows us to distinguish different Fp-algebra
structures on Fp
Z

LFp.
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Thus it suffices to show that the composite

N /p! (N 
Z
LFp)/p'N 
Z

LFp
Z
LFp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !idN
mult

N 
Z
LFp

is equivalent to identity. Note that the first map can be identified with

N 
Z
LFp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

idN
1
idFp
N 
Z

LFp
Z
LFp

and the result follows from the fact that the composite map

Fp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
1
idFp

Fp
Z
LFp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !mult

Fp

of animated rings is identity. �

Proposition 6.25. The map THH(Fp)tCp!ZtCp of E1-THH(Z)tCp-algebras in Construction 6.16
is an equivalence.

Proof. Since both the source and the target is p-complete by [NS18, Lem I.2.9], it suffices to
check that this map is an equivalence after modulo p. Now the result follows from Lemmas 6.21
and 6.24. �

Corollary 6.26. Let M be a THH(Z)h-module in Spg
<T. Then there exists a lax symmetric

monoidal (in M) equivalence¡
(M 
THH(Z)h

L THH(Fp)h)
�THH(Fp)T

�
p
^! ((M 
THH(Z)h

L Z)�ZT)p^

of TP(Z)-modules.

Proof. By Corollary 5.26, it suffices to produce a symmetric monoidal equivalence

(M 
THH(Z)h
L THH(Fp)h)�Cp¡! (M 
THH(Z)h

L Z)�Cp

in ModTHH(Z)tCp(Sp
B (T/Cp)), which is an immediate consequence of Proposition 6.25. �

Remark 6.27. When p is an odd prime, [DR25, Prop 5.2.1] shows that the map Z!THH(Fp)
induces an equivalence ZtCp! THH(Fp)tCp of E1-THH(Z)tCp-algebras, which implies Corol-
lary 6.26 (although a priori, the map there might be different from the one here), and the map
even has a ZtT-module structure.

Corollary 6.28. Let C be a dualizable presentable stable Z-linear 1-category. Then there exists
a lax symmetric monoidal (in C) equivalence

TPpoly/Fp(C 
Z
LFp)p^¡!HPpoly(C/Z)p^

of TP(Z)-modules.

Proof. Apply Corollary 6.26 to M =THH(C)
THH(Z)
L THH(Z)h. �

7 Comparison to THH

Recall that the Cartier isomorphism identifies algebraic de Rham cohomology groups of smooth
Fp-algebras with their algebraic differential forms. We give two noncommutative analogues. In
this section, we discuss one of them, which compares polynomial coperiodic cyclic homology of
dualizable presentable stable Fp-linear 1-categories with their topological Hochschild homology.
This comparison was proved in [Kal20, Cor 11.15] for associative Fp-algebras, using Goodwillie
derivative of (Hochschild�)Witt trace theory. We give two arguments. Although the second argu-
ment is much shorter, the first argument gives us more information, which is used in Section 8.

The key to the first argument is the observation that the T/Cp-equivariant E1-ZtCp-module
Fp
tCp is co-induced.
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Construction 7.1. Let n2N>0. There is a map

ZT/Cn¡!Z/n

in D(Z)BT, where Z/n is equipped with the trivial action, i.e. $1
�(Z/n). Indeed, this map is taken

to be represented7.1 by the following surjective map

0 ¡1

Z ����������
n

0

Z

 
¡

 
¡

Z/n ��������
0

0

0

of mixed complexes concentrated in homological degrees [¡1; 0]. Since it is surjective, it is a
fibration in the projective model structure on mixed complexes, with kernel being the mixed

complex
�
nZ����������

n

0

Z

�
, which represents ZT2D(Z)BT. Consequently, we get a fiber sequence

ZT¡!ZT/Cn¡!Z/n

in D(Z)BT.

Remark 7.2. One can also construct the map and the fiber sequence in Construction 7.1 by the
gold relation a�nu�m=(n/m)a�mu�n for (m;n)2N>0

2 with m jn in [HHR17, Lem 3.6] (where u�m's
become equivalence after forgetting to the Borel equivariant objects), where �n is the complex S1-

representation S1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)n
C� viewed as a real representation, and a�n is the Euler class S0!S�

n
,

i.e. the map of Thom spectra of the inclusion f0g��n of representations. Indeed, there is a fiber
sequence

�T
1 [T/Cn]+¡!S0¡!S�

n

of cyclonic spectra (and thus, of T-equivariant spectra), cf. [Sul20, Obs 2.32]. Taking Z-linear dual,
and applying the �octahedral axiom� to the gold relation a�n�na�1, we get the fiber sequence in
Construction 7.1.

This allows us to establish results beyond char p, as observed by Yuri Sulyma in [Sul20,
Lem 4.9].

Corollary 7.3. The map ZT/Cn!Z/n in D(Z)BT as in Construction 7.1 induces an equivalence

ZtCn
Z
LZT/Cn¡! (Z/n)tCn

in ModZtCn(D(Z)
B(T/Cn)).

Proof. Applying (¡)tCn to the fiber sequence in Construction 7.1, we see that the induced map
(ZT/Cn)tCn! (Z/n)tCn in D(Z)B(T/Cn) is an equivalence (which even has an E1-structure). It
suffices to establish an equivalence

ZtCn
Z
LZT/Cn¡! (ZT/Cn)tCn

in ModZtCn(D(Z)
B(T/Cn)). This is given by equivalences

ZtCn
Z
LZT/Cn ' (ZtCn
Z

LZ[T/Cn])[¡1]
' (ZtCn
 (T/Cn))[¡1]
' (Z[T/Cn])tCn[¡1]
' (ZT/Cn)tCn

in ModZtCn(D(Z)
B(T/Cn)). �

7.1. The E1-monoidal equivalence of the monoidal1-category D(Z)BT and the monoidal1-category of mixed
complexes up to quasi-isomorphism is explained in details in [Lei22, §5.4].
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Warning 7.4. The map in Corollary 7.3 does not carry any E1-structure when n= 2. Indeed,
on the left hand side, the square-zero class e 2 �¡1(ZT/Cn) gives rise to a square-zero class e 2
�¡1(ZT/Cn
Z

LZtCn), while the homotopy ring ��(F2
tC2) is isomorphic to F2((s)) for a generator

s2�1(F2tC2), which is integral, thus any square-zero elements is necessarily zero.

Question 5. Is there any version of E1-enhancement of Corollary 7.3?

Now we compare polynomial periodic cyclic homology of dualizable presentable stable Fp-
linear 1-categories. Slightly more generally, we consider THH(Fp)-modules in cyclonic spectra.
By Lemma 2.13 and the symmetric monoidal structure on (¡)�Cp, we have

Lemma 7.5. Let k be a commutative algebra. Then the composite functor

ModTHH(k)(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

(¡)
THH(k)
L k

Modk(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

¡
(¡)�kT �

p
^

D(ktT)p^:

is equivalent to the composite functor

ModTHH(k)(Spg
<T) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

ModTHH(k)�Cp(Sp
gp(T/Cp))

 
¡

ModktCp(Sp
gp(T/Cp)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
k
tCp

(T/Cp)

D(ktT)

where the vertical arrow is the base change along the map THH(k)�Cp!ktCp of T/Cp-E1-rings.

Remark 7.6. Recall that both maps in the composite map Z!Zp=TR(Fp)!THH(Fp) of T-

E1-rings become equivalences after taking geometric fixed points (¡)�Cp (cf. [AMR21, Rem 10.9]).
It follows that we can identify the T-E1-ring THH(Fp) with Z�Cp. Moreover, by [HM97], there
exists a Bökstedt element �2�2TF(Fp) which maps to a Bökstedt element in �2TRr(Fp) for every
r2N>0, and by [NS18, Lem II.6.1] and computational results about THH(Fp), we can identify the
T-E1-ring THH(Fp)[�¡1] with the Borel T-E1-ring ZtCp. Consequently, for every associative
ring k, the map k�Cp! ktCp of T-E1-rings is simply inverting �.

Lemma 7.7. The composite functor

ModTHH(Fp)tCp(Sp
gp(T/Cp))¡!Mod

Fp
tCp(Spgp(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
Fp
tCp

(T/Cp)

D(ZtT)

coincides with the forgetful functor, where the first functor is the base change along the map
THH(Fp)tCp!Fp

tCp of Borel E1-p-cyclonic spectra.

Recall that the map Z!THH(Fp) as in Remark 7.6 also becomes an equivalence after taking
(¡)tCp by [NS18, Cor IV.4.13], thus we can replace THH(Fp)tCp by ZtCp in Lemma 7.7.

Proof. Since both functors in question preserve filtered colimits, it suffices to check on compact
objects of ModZtCp(Sp

gp(T/Cp)). Note that the first base change functor preserves compact objects.
The result follows from Corollary 7.3. �

Remark 7.8. The target of the composite functor in Lemma 7.7 has an Fp
tT-module structure,

and such a structure is yet to explore.

Summarizing the above discussion, we get

Proposition 7.9. The composite functor

ModTHH(Fp)(Sp
g<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

(¡)
THH(Fp)
L Fp

ModFp(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�Fp
T

D(ZtT)
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coincides with with the composite functor

ModTHH(Fp)(Sp
g<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

ModTHH(Fp)�Cp(Sp
gp(T/Cp))¡!D(ZtT);

where the second functor is inverting � to the underlying THH(Fp)�Cp-module.

Applying to the THH(Fp)-module spectrum THH(C), we get:

Corollary 7.10. Let C be a dualizable presentable stable Fp-linear 1-category. Then the polyno-
mial periodic cyclic homology HPpoly(C/Fp) is equivalent to THH(C)[�¡1] as ZtT-module spectra.

Remark 7.11. We do not compare the multiplicative structures on polynomial periodic cyclic
homology (as a lax symmetric monoidal functor) with topological Hochschild homology in Corol-
lary 7.10.

Now we give a second proof of Lemma 7.7, inspired by the proof of [Mat20, Prop 2.15]. The
key is the following lemma.

Lemma 7.12. The composite functor

ModTHH(Fp)tCp(Sp
B(T/Cp))¡!Mod

Fp
tCp(SpB(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h(T/Cp)

D(TP(Fp))

coincides with the forgetful functor.

Proof. Since the image of u2 �2TC¡(Fp) under the canonical map TC¡(Fp)!TP(Fp) is u p2
�2TP(Fp) as reviewed in Remark 4.10, this composite functor coincides with the composite functor

ModTHH(Fp)tCp(Sp
B(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h(T/Cp)

D(TP(Fp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)/Lp
D(TP(Fp));

which is subsequently identified with the forgetful functor by the proof of [BMS19, Prop 6.4] (or
more precisely, the first displayed formula there). �

Lemma 7.7 follows from the fact that the composite functor in Lemma 7.12, by virtue of
identification with the forgetful functor, preserves filtered colimits, and that the first functor
ModTHH(Fp)tCp(Sp

gp(T/Cp))!Mod
Fp
tCp(Spgp(T/Cp)) in Lemma 7.7 preserves compact objects.

8 Conjugate filtration

As explained in the introduction of Section 7, another noncommutative analogue of the Cartier
isomorphism is conjugate filtration, which we will address in this section. As there, our version is
constructed out of THH(k)-modules for a base commutative ring k, and by Lemma 7.5, it is crucial
to analyze the map THH(k)�Cp! ktCp, endowing the target ktCp a suitable filtration.

First, we note that, the homotopy Cp-fixed points khCp of a commutative Fp-algebra k is a
direct summand of the Cp-Tate construction ktCp.

Remark 8.1. LetM be an Fp-vector space. Then it follows from computations that the composite
map

MhCp¡!M tCp¡! �60M tCp

of Fp
hCp-module spectra is an equivalence. In particular, let k be a commutative Fp-algebra. Then

the composite map

khCp¡! ktCp¡! �60 ktCp

of khCp-module spectra is an equivalence, where the first map has an E1-structure, and the second
map has a ktCp-module structure.
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Recall that, in Section 7, a key fact is that the T/Cp-equivariant ZtCp-module spectrum Fp
tCp is

co-induced. It is natural to ask whether the same holds for ktCp for any commutative Fp-algebra k.
We do not know the answer, but expect it to be false, at least functorially in k (see Remark 8.6).
However, note that the E1-ring ktCp is 2-periodic, and we show that a �fundamental region� of
ktCp with respect to its 2-periodicity is T/Cp-equivariantly k-linearly co-induced.

Notation 8.2. Let n be a positive integer. Let CoInde
T/Cn denote right adjoint D(Z)!D(Z)B(T/Cn)

to the (symmetric monoidal) forgetful functor D(Z)B(T/Cn)!D(Z).

Construction 8.3. LetM be a spectrum. Endow M with trivial T-action, we get a map $p
�M!

MhCp in Fun(B(T/Cp); Sp), where $p :T/Cp!� is the quotient map, which gives rise to a lax
symmetric monoidal lax transformation

$p
�(¡)¡! (¡)hCp

between lax symmetric monoidal functors Sp! Fun(B(T/Cp); Sp). On the other hand, there
is a non-T/Cp-equivariant map MhCp!M which, by adjunction, gives rise to a map MhCp!
CoInde

T/CpM in Fun(B(T/Cp); Sp) which is functorial in M 2 Sp, and this has a lax symmetric
monoidal structure. In summary, we have a composite lax symmetric natural transformation

$p
�(¡)¡! (¡)hCp¡!CoInde

T/Cp(¡)

of lax symmetric monoidal functors Sp!Fun(B(T/Cp);Sp).

Lemma 8.4. Let M be an Fp-vector space. Then the composite map

�>¡1MhCp¡!MhCp¡!CoInde
T/CpM

of T/Cp-equivariant Fp-module8.1 spectra is an equivalence, where the second map is as in Con-
struction 8.3.

Proof. Since the maps in question are already constructed, to check that it is an equivalence, we
could pick a free Z-liftM~ of M , namely, a free abelian groupM~ =Z�I withM~ /p=�M . Then taking
I-direct sum8.2 of the equivalence in Corollary 7.3 and truncating at [¡1;0], we get an equivalence
as an inverse to the composite map in question. �

It follows from lax symmetric monoidal structures in Construction 8.3 and Lemma 8.4 that

Corollary 8.5. Let k be a commutative Fp-algebra. Then there is a canonical equivalence

�>¡1 khCp¡!CoInde
T/Cp k

of T/Cp-equivariant k-modules.

Remark 8.6. Let M be an Fp-vector space. It is unclear whether we can functorially identify
M tCp with the co-induced T/Cp-equivariant Z-module spectrum CoInde

T/Cp(M tT) (although we
can do it functorially in free Z-lifts M~ ), let alone Fp-linearly. The multiplicative structure is even
more complicated.

Now we describe the filtration on khCp and ktCp as promised.

Construction 8.7. Let k be a commutative Fp-algebra. Then we consider the odd filtration
on T/Cp-equivariant �>0(ktCp)-module spectra khCp, ktCp, and the canonical T/Cp-equivariant
�>0(ktCp)-module map khCp! ktCp, given by the odd parts of the Whitehead filtrations, i.e. for
i2Z, we have

Filoddi khCp := �>2i¡1 khCp;
Filoddi ktCp := �>2i¡1 ktCp:

8.1. The Fp-module structure comes from lax symmetric monoidal structures in Construction 8.3.
8.2. Tate construction preserves infinite direct sum of uniformly t-bounded objects.
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We note that Filodd
>0 khCp=0, and the maps groddi khCp! groddi ktCp are equivalences for i� 0.

Remark 8.8. Note that grodd0 ktCp = �>¡1 khCp is concentrated in degree [¡1; 0], by [Lur17,
Prop 2.2.1.8], the �>0(ktCp)-module structure on grodd0 ktCp descends canonically to a �[0;1](ktCp)=
k
Z

LFp-module structure, where the animated ring k
Z
LFp is equipped with trivial T/Cp-action.

We now produce the conjugate filtration for THH(k)-modules. Before this, we need a base-
independence result, which says that the de-completed Tate construction over ktCp coincides with
that over �>0(ktCp).

Lemma 8.9. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)
�
�>0

�
k
tCp

�(T/Cp)
¡! (¡)�ktCp(T/Cp)

of functors ModktCp(Sp
gpT)!D(k), induced by the map �>0(ktCp)!ktCp in CAlg(D(k)B(T/Cp)),

is an equivalence.

Proof. It suffices to show that, for every compact generatorM=ktCp
 [T/Cpr]2ModktCp(Sp
gpT)@0,

the assembly map

M
�
�>0

�
k
tCp

�(T/Cp)
¡!Mh(T/Cp)

is an equivalence. Recall that the Whitehead tower of ktCp=(�>0ktCp)[�¡1] is a sequential colimit
of shifts of �>0(ktCp), where � 2 �2(ktCp) is a generator. Then the result follows from the fact
that (¡)h(T/Cp) preserves weakly Whitehead towers (cf. [NS18, Lem I.2.6], or the dual of [BMS19,
Lem 3.3]). �

Construction 8.10. (Conjugate filtration) Let k be a commutative Fp-algebra, and M a
THH(k)-module in Spg

<T. Then by Lemma 7.5 and Construction 8.7, the ZtT-module spectrum

(M 
THH(k)
L k)�kT'

¡
M�Cp
THH(k)�Cp

L �>0(ktCp)
�>0(ktCp)
L ktCp

��
�>0

�
k
tCp

�(T/Cp)

admits a filtration Filconj� induced by the odd filtration on ktCp.

We now analyze the associated graded pieces of the conjugate filtration. It suffices to analyze
the zeroth associated piece:

Remark 8.11. By 2-periodicity of ktCp, all groddi ktCp's, as k�Cp-modules, are isomorphic up to a
shift. Thus to study associated graded pieces of odd filtered ktCp, it suffices to study grodd0 ktCp'
groddi khCp, thus the same for the conjugate filtration.

Since k
Z
LFp=(�>0 ktCp)/� is a perfect �>0 ktCp-module in SpB(T/Cp), we have

Lemma 8.12. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)
�
�>0

�
k
tCp

�(T/Cp)
¡! (¡)

�
k
Z

LFp
(T/Cp)

of functors Modk
Z
LFp(Sp

gpT) ! D(k), induced by the map �>0(ktCp) ! k 
Z
L Fp in

CAlg(D(k)B(T/Cp)), is an equivalence (we tacitly used Remark 2.4).

Similarly, by perfectness of k-module k
Z
LFp, we have

Lemma 8.13. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)�k(T/Cp)¡! (¡)
�
k
Z

LFp
(T/Cp)

of functors Modk
Z
LFp(Sp

gpT)!D(k), induced by the map k!k
Z
LFp in CAlg(D(k)B(T/Cp)), is

an equivalence (we tacitly used Remark 2.4).

It follows from Remark 8.8 and Lemmas 8.12 and 8.13 that
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Lemma 8.14. Let k be a commutative Fp-algebra, and M a THH(k)-module in Spg
<T. Then the

0-th associated graded piece grconj0 (M 
THH(k)
L k)�kTof the conjugate filtration is equivalent to¡¡

M�Cp
THH(k)�Cp
L (k
Z

LFp)
�

k
Z

LFp
L grodd0 ktCp

�
�k(T/Cp)

in D(k) (again, we tacitly used Remark 2.4).

Now we embark to understand the composite map THH(k)!!!!!!!!!!!!!!' THH(k)�Cp! k
Z
LFp of T-

E1-rings8.3. In fact, this could be understood for any commutative ring, not necessarily over Fp.

Remark 8.15. Let k be an animated ring. By construction (cf. [NS18, §IV.2]), we have a com-
mutative diagram

k ¡! THH(k)
 
¡'  
¡'

(Ne
Cp k)�Cp ¡! THH(k)�Cp ¡! k�Cp

 
¡

 
¡

 
¡

(k
Sp)tCp ¡! THH(k)tCp ¡! ktCp

where the leftmost row are maps of E1-rings while the rest are T-E1-rings. The composite map
k! ktCp from the top left to the bottom right is the Tate-valued Frobenius.

Remark 8.16. Let k be an animated ring. Note that we have a commutative diagram

k ¡! k�Cp

 
¡

 
¡

k !!!!!!!!!!!!!!!!!!!!
'~k

k
Z
LFp

in CAlg(D(Z)), where the top arrow is found in Remark 8.15, the bottom arrow is induced by the
�extended� Frobenius map '~k :k!k
Z

LFp!k
Z
LFp of animated rings, and except the top left k,

other terms are T-E1-rings, and the arrows between T-E1-rings have T-E1-structures. By the
universal property of THH in [ABG+18], we get a commutative diagram

THH(k) ¡! k�Cp

 
¡

 
¡

k !!!!!!!!!!!!!!!!!!!!
'~k

k
Z
LFp

of T-E1-rings8.4.

So far, we have analyze the part M�Cp
THH(k)�Cp
L (k
Z

LFp) of the expression in Lemma 8.14.

Now we analyze the part ((¡)
k
Z
LFp

L grodd0 ktCp)�k(T/Cp) for commutative Fp-algebras k. It follows
from Corollary 8.5 that this simplifies to (¡)
k
Z

LFp
L k, where the k
Z

LFp-module structure on k

is simply given by the multiplication map k 
Z
LFp! k. Recall that, for animated Fp-algebras k,

the composite map

k!!!!!!!!!!!!!!!!!!!!'~k k
Z
LFp¡! k

coincides with the usual Frobenius map 'k : k! k. The above discussion implies that

Proposition 8.17. Let k be a commutative Fp-algebra, and M a THH(k)-module in Spg
<T. Then

the 0-th associated graded piece grconj0 (M 
THH(k)
L k)�kTof the conjugate filtration is equivalent to

the Frobenius twist

(M�Cp
THH(k)
L k)
k;'k

L k

8.3. For our purposes, thanks to Remark 2.4, it suffices to understand the underlying T-equivariant E1-ring.
However, here we deduce slightly stronger results.

8.4. Those who are not familiar with T-E1-rings can simply replace them by T-equivariant E1-rings, and the
THH also has an analogous universal property by McClure�Schwänzl�Vogt, cf. [NS18, Prop IV.2.2].
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in D(k), where the THH(k)-module structure on M�Cp is induced by the equivalence

THH(k)!!!!!!!!!!!!!!' THH(k)�Cp.

Corollary 8.18. Let k be a commutative Fp-algebra, and C a dualizable presentable stable Fp-
linear 1-category. Then the 0-th associated graded piece grconj0 HPpoly(C/k) is equivalent to HH(C/
k)
k;'k

L k in D(k).

Finally, we show that the conjugate filtration is complete. It suffices to establish the following
connectivity result.

Lemma 8.19. Let k be a commutative Fp-algebra, and M a THH(k)�Cp-module in Spg
<(T/Cp).

Suppose that M is connective. Then the spectrum¡
M 
THH(k)�Cp

L �>¡1 ktCp
��

�>0
�
k
tCp

�(T/Cp)

is connective.

Note that ktCp is co-induced in D(Z). Although it might not be compatibility with THH(k)�Cp-
module structure, this is already enough for us to prove the connectivity.

Proof. By the bar resolution of the relative tensor product, and the fact that the de-completed
Tate construction preserves small colimits, it suffices to show that, for every n2N, the spectrum¡

M 
Z
L (THH(k)�Cp)
Z

Ln
Z
L �>¡1 ktCp

��
�>0

�
k
tCp

�(T/Cp)

is connective. We write k as a direct sum Fp
�I, and applying Corollary 7.3, we see that this spectrum

is equivalent to the direct sum of I's copies of

M 
Z
L (THH(k)�Cp)
Z

Ln
Z
L �>0ZtCp

which is connective. �

By 2-periodicity of ktCp, and the fact that (¡)�Cp preserves connectivity, we deduce from
Lemma 8.19 that

Corollary 8.20. Let k be a commutative Fp-algebra, and M a connective THH(k)-module in
Spg

<T. Then the conjugate filtration on (M 
THH(k)
L k)�kT is complete.

Corollary 8.21. Let k be a commutative Fp-algebra, and C a dualizable presentable stable Fp-
linear 1-category. Suppose that its topological Hochschild homology THH(C) is bounded below8.5.
Then the conjugate filtration on its polynomial periodic cyclic homology HPpoly(C/k) is complete.

Appendix A Tate cohomology complex

We briefly show that our de-completed Tate cohomology on Lazard-semi-flat chain complexes of
cohomological Mackey functors can be computed by Tate cohomology complex in [Kal15, §6.2], or
[PVV18, §2.1], thus it is a homotopy invariant version of the latter.

Let k be a commutative ring. Recall that a finitely generated permutation G-module is a (left)
k[G]-module of the form k[X] for some finite G-set X. We denote by PermG(k)�LModk[G] the
full subcategory spanned by finitely generated permutation G-modules. We refer to [BG21] for
comparison of different characterizations of cohomological Mackey functors, and [BCN21, Ex 2.5]
for the equivalence D(MackGcoh(k))=Modk(SpgG) between derived cohomological G-Mackey func-
tors and k-modules in genuine G-spectra.

Now we start with a flatness of cohomological Mackey functors.

8.5. This is the case when C =D(R) for a (¡1)-connective E1-k-algebra R, or C =D(X) for a quasicompact
quasiseparated k-scheme X.
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Definition A.1. Let k be a commutative ring, and G a finite group.

� We say that a cohomological Mackey functor is Lazard-flat if it is a filtered colimit of finitely
generated permutation modules.

� We say that an (unbounded) chain complex of cohomological Mackey functors is Lazard-
semi-flat if it is a filtered colimit of bounded chain complexes of finitely generated permuta-
tion modules. Compare with [ CH15, Thm 1.1].

Remark A.2. Let k be a commutative ring, and G a finite group. Then permutation k[G]-modules
are compact in the category MackGcoh(k) of cohomological G-Mackey functors. Consequently, we
have a canonical fully faithful functor

Ind(PermG) ,¡!MackGcoh(k):

In particular, we can identify Lazard-flat (derived) cohomological Mackey functors as objects of
Ind(PermG(k)).

Similarly, recall that a chain complex in an additive category is compact if and only if it is
bounded and degreewise compact [CH15, Thm 4.5]. The preceding argument shows that we have
a canonical fully faithful functor

Ind(Chb(PermG(k))) ,¡!Ch(MackGcoh(k))

and thus we can identify Lazard-semi-flat chain complexes of cohomological Mackey functors as
objects of Ind(Chb(PermG(k))).

Lazard-flat cohomological Mackey functors (resp. Lazard-semi-flat chain complexes of cohomo-
logical Mackey functors) are in fact k[G]-modules (resp. chain complexes of k[G]-modules):

Remark A.3. Let k be a commutative ring, and G a finite group. Then finitely generated
permutation k[G]-modules are compact in the category LModk[G] of left G-modules, thus the fully
faithful functor

Ind(PermG(k)) ,¡!MackGcoh(k)

in Remark A.2 factors through the inclusion LModk[G] ,!MackGcoh(k), and the fully faithful functor

Ind(Chb(PermG(k))) ,¡!Ch(MackGcoh(k))

factors through the inclusion Ch(LModk[G]) ,!Ch(MackGcoh(k)).

Now we review the Tate cohomology complex. Let k be a commutative ring, and G a finite
group. A complete resolution [PVV18, §2.1] of the left k[G]-module k is an acyclic complex P�2
Ch(LModk[G]

free ) of free left k[G]-modules along with an isomorphism " :Z!ker(d :P0!P¡1) of left
k[G]-modules.

Definition A.4. Let k be a commutative ring, G a finite group, and P� a complete resolution of
k. The functor of the Tate cohomology complex is defined to be the functor

Ch(MackGcoh(k)) ¡! Ch(k);
M� 7¡! (Tot�(M�
kP�))G:

On Lazard-semi-flat chain complexes of cohomological Mackey functors, the Tate cohomology
complex represents the de-completed Tate cohomology. More precisely, we have

Proposition A.5. Let k be a commutative ring, and G a finite group. Then we have a commutative
diagram

Ind(Chb(PermG(k))) ¡! Ch(k)

 
¡

 
¡

D(MackGcoh(k))=Modk(SpgG) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�kG
D(k)
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of additive 1-categories, where the top horizontal arrow is the composite of the inclusion in
Remark A.2 and the Tate cohomology complex, and the vertical arrows are localizations at quasi-
isomorphisms.

Sketch of proof. Since all functors in question preserve filtered colimits, we can replace the top
left term Ind(Chb(PermG(k))) by Chb(PermG(k)). By stability, we could further restrict to the full
subcategory Ch>0b (PermG(k)) of bounded chain complexes concentrated in non-negative degrees.
This is the same as freely adjoining finitary-geometric-realizations to PermG(k). All functors in
question preserve finitary geometric realizations, thus we can replace the top left term simply by
PermG(k).

In this case, the left vertical arrow is fully faithful, with essential image being compact in
Modk(SpgG). Therefore we may replace (¡)�kG by (¡)tG. It remains to show that, for every finitely
generated permutation G-moduleM , the complex (M 
kP�)G representsM tG, which follows from
definition. �
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